Bending of Plates with Complex Shape Made from Materials that Differently Resist to Tension and Compression

Author:

Sklepus Serhii M.ORCID,

Abstract

A new numerical-analytical method for solving physically nonlinear bending problems of thin plates with complex shape made from materials that differently resist to tension and compression is developed. The uninterrupted parameter continuation method is used to formulate and linearize the problem of physically nonlinear bending. For the linearized problem, a functional in the Lagrange form, given on the kinematically possible displacement rates, is constructed. The main unknown problems (displacements, strains, stresses) were found from the solution of the initial problem, which was solved by the Runge-Kutta-Merson method with automatic step selection, by the parameter related to the load. The initial conditions are found from the solution of the problem of linear elastic deformation. The right-hand sides of the differential equations at fixed values of the load parameter corresponding to the Runge-Kutta-Merson scheme are found from the solution of the variational problem for the functional in the Lagrange form. Variational problems are solved using the Ritz method in combination with the R-function method, which allows to submit an approximate solution in the form of a formula – a solution structure that exactly satisfies the boundary conditions and is invariant with respect to the shape of the domain where the approximate solution is sought. The test problem for the nonlinear elastic bending of a square hinged plate is solved. Satisfactory agreement with the three-dimensional solution is obtained. The bending problem of the plate of complex shape with combined fixation conditions is solved. The influence of the geometric shape and fixation conditions on the stress-strain state is studied. It is shown that failure to take into account the different behavior of the material under tensile and compression can lead to significant errors in the calculations of the stress-strain state parameters.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Reference18 articles.

1. 1. Zhukov, A. M. (1986). Soprotivleniye nekotorykh materialov chistomu rastyazheniyu i szhatiyu [Resistance of some materials to pure tension and compression]. Izvestiya AN SSSR. Mekhanika tverdogo tela - Mechanics of Solids, no. 4, pp. 197-202 (in Russian).

2. 2. Miklyayev, P. G. & Fridman, Ya. B. (1986). Anizotropiya mekhanicheskikh svoystv metallov [Anisotropy of mechanical properties of metals]. Moscow: Metallurgiya, 224 p. (in Russian).

3. 3. Sarrak, V. I. & Filippov, G. A. (1977). Effekt raznogo soprotivleniya deformatsii pri rastyazhenii i szhatii martensita zakalennoy stali [The effect of different resistance to deformation in tension and compression of hardened steel martensite]. Fizika metallov i metallovedeniye - Physics of Metals and Metallography, vol. 44, iss. 4, pp. 858-863 (in Russian).

4. 4. Zolochevskiy, A. A. (1994). Razrabotka matematicheskikh modeley uprugosti, plastichnosti, polzuchesti izotropnykh i anizotropnykh tel s kharakteristikami, zavisyashchimi ot vida nagruzheniya [Development of mathematical models of elasticity, plasticity, creep of isotropic and anisotropic bodies with characteristics depending on the type of loading]: D. Sci. (Eng.) dissertation. Kharkov Polytechnic Institute, Kharkiv, 521 p. (in Russian).

5. 5. Zolochevskiy, A. A., Sklepus, A. N., & Sklepus, S. N. (2011). Nelineynaya mekhanika deformiruyemogo tverdogo tela [Nonlinear mechanics of a deformable solid body]. Kharkiv: «Biznes Investor Grupp», 720 p. (in Russian).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3