Aeroelastic Characteristics of Rotor Blades of Last Stage of a Powerful Steam Turbine

Author:

Kolodiazhna Liubov V.ORCID, ,Bykov Yurii A.ORCID,

Abstract

Blades of powerful steam turbines are subjected to significant unsteady loads, which, in some cases, can lead to the appearance of self-excited oscillations or auto-oscillations. These fluctuations are extremely dangerous and negatively affect the life time of the blading. When developing new or upgrading existing turbine stages, it is necessary to carry out research on the aeroelastic behavior of the rotor blades. As a result of the modernization of a low-pressure cylinder of a 1000 MW steam turbine, the length of the rotor blades of the last stage increased to 1650 mm. In this regard, a numerical analysis of the aeroelastic characteristics of the last-stage rotor blades in the nominal operation mode was carried out. The analysis used the method of solving the coupled problem of unsteady aerodynamics and elastic blade vibrations, which allows the prediction of the amplitude-frequency spectrum of unsteady loads and blade vibrations in a viscous gas flow. The paper presents the results of numerical analysis of aeroelastic characteristics of the last stage rotor blades both for the mode of controlled harmonic oscillations with a given amplitude and inter-blade phase shift, and for the mode of coupled oscillations of the blades under influence of unsteady aerodynamic forces. The results of the simulation of coupled oscillations of blades for the first five natural forms are presented in the form of the time distribution of displacement of the blade peripheral cross-section, as well as the time distribution of forces and moments acting on the peripheral cross-section. The corresponding amplitude-frequency spectra of displacements and loads in the peripheral section are also given. The results of the calculations showed a positive damping of oscillations, the absence of flutter and auto-oscillations for the first five natural forms of oscillations of the blades in the nominal operation mode of the steam turbine

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fluid-filled Shell Structures and Their Applications in Biomechanics;2023 IEEE 4th KhPI Week on Advanced Technology (KhPIWeek);2023-10-02

2. Fuzzy Analysis of Fluid Vibrations in Liquid Storage Tanks under Wind Loads;2023 IEEE 4th KhPI Week on Advanced Technology (KhPIWeek);2023-10-02

3. The Mutual Effect Study of Horizontal and Vertical Loads on the Elastic Tank Partially Filled with Liquid;Engineering World;2023-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3