Method of Solving Geometrically Nonlinear Bending Problems of Thin Shallow Shells of Complex Shape

Author:

Sklepus Serhii M.ORCID,

Abstract

A new numerical analytical method for solving geometrically nonlinear bending problems of thin shallow shells and plates of complex shape is given in the paper. The problem statement is performed within the framework of the classic geometrically nonlinear formulation. The parameter continuation method was used to linearize the nonlinear bending problem of shallow shells and plates. An increasing parameter t related to the external load, which characterizes the shell loading process, is introduced. For the variational formulation of the linearized problem, a functional in the Lagrange form, defined on the kinematically possible movement speeds, is constructed. To find the main unknowns of the problem of nonlinear bending of the shell (displacement, deformation, stress), the Cauchy problem was formulated by the parameter t for the system of ordinary differential equations, which was solved by the fourth order Runge-Kutta-Merson method with automatic step selection. The initial conditions are found from the solution of the problem of geometric linear deformation. The right-hand sides of the differential equations at fixed values of the parameter t, corresponding to the Runge-Kutta-Merson scheme, were found from the solution of the variational problem for the functional in the Lagrange form. Variational problems were solved using the Ritz method combined with the R-function method, which allows to accurately take into account the geometric information about the boundary value problem and provide an approximate solution in the form of a formula - a solution structure that exactly satisfies all (general structure) or part (partial structure) of boundary conditions. The test problem for the nonlinear bending of a square clamped plate under the action of a uniformly distributed load of different intensity is solved. The results for deflections and stresses obtained using the developed method are compared with the analytical solution and the solution obtained by the finite element method. The problem of bending of a clamped plate of complex shape is solved. The effect of the geometric shape on the stress-strain state is studied

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Reference15 articles.

1. 1. Grigorenko, Ya. M. & Vasilenko, A. T. (1981). Metody rascheta obolochek [Methods for calculating shells]: in 5 vols. Vol. 4. Teoriya obolochek peremennoy zhestkosti [Theory of shells with variable stiffness]. Kyiv: Naukova dumka, 544 p. (in Russian).

2. 2. Grigorenko, Ya. M. & Gulyaev, V. I. (1991). Nonlinear problems of shell theory and their solution methods (review). International Applied Mechanics, vol. 27, pp. 929-947. https://doi.org/10.1007/BF00887499.

3. 3. Rasskazov, A. O., Sokolovskaya, I. I., Shulga, N. A. (1986). Teoriya i raschet sloistykh ortotropnykh plastin i obolochek [Theory and calculation of layered orthotropic plates and shells]. Kyiv: Vysshaya shkola, 191 p. (in Russian).

4. 4. Bathe, K. J. & Wilson, E. L. (1976). Numerical methods in finite element analysis. Prentice Hall.

5. 5. Sabir, A. B. & Djoudi, M. S. (1995). Shallow shell finite element for the large deflection geometrically nonlinear analysis of shells and plates. Thin-Walled Structures, vol. 21, iss. 3, pp. 253-267. https://doi.org/10.1016/0263-8231(94)00005-K.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3