Use of generative-adversarial networks when creating content

Author:

L KorotkaORCID, ,D KlevzhytsORCID,D ShvydkoORCID, ,

Abstract

The application of generative-adversarial networks in the creation of content is studied. Monitoring of training, analysis of architectures, determination of internal processes at the level of layers, research of properties of latent space, and interaction with it are carried out. Variants of using the specified networks in image generation are considered. Special attention is paid to practical implementation aspects, including selecting optimal parameters and data processing. The difference between a classifier and a discriminator is formulated. The principles of generative-adversarial networks and their influence on the efficiency and quality of generated images are studied. The advantages and limitations of using GANs in content creation are considered.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Reference9 articles.

1. 1. Стратегія розвитку штучного інтелекту в Україні. За загальною редакцією А. І. Шевченка. Видавництво «Торпеда». Київ - 2023 р. С 306

2. 2. Sopel, M., Stasyuk, O., Kuznetsov, V., Goncharova, L., Hubskyi, P. Regina computer system for intelligent monitoring, diagnostics, and management of railway power supply systems Diagnostykathis link is disabled, 2021, 22(4), стр. 77-88 (Scopus) (Q3). https://www.scopus.com/authid/detail.uri?authorId=57 191292791

3. 3. Stasiuk, A., Kuznetsov, V., Goncharova, L., Hubskyi, P. Models of the computer intellectualization optimal strategy of the power supply fast-flowing technological processes of the railways traction substations. Communications - Scientific Letters of the University of Zilina, 2021, 23(2), стр. C30-C36. (Scopus) (Q3). http://komunikacie.uniza.sk/index.php/communications /article/view/1680

4. 4. Stasiuk O.I., Goncharova L.L. Mathematical Models and Methods for Analyzing Computer Control Networks of Railway Power Supply. New Means Cybernetics, Informatics, Computers Engineering and Systems Analysis. Springer Science+Business Media New York 2018. Volume 54, Issue 1, February 2018, Pages 165-172. (Scopus) (Q3). https://link.springer.com/article/10.1007/s10559-018- 0017-0

5. 5. Stasiuk A.I., Hryshchuk, R.V., Goncharova L.L. Mathematical differential models and methods for assessing the cybersecurity of computer networks intelligent control of technological processes of railway power supply. New Means Cybernetics, Informatics, Computers Engineering and Systems Analysis. Springer Science+Business Media New York 2018. Volume 54, Issue 4, February 2018, Pages 671-68. (Scopus) (Q3). https://link.springer.com/article/10.1007/s10559-018- 0068-2

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3