DETERMINATION OF THE ROTATION MEASURE VALUE SIGN WHEN RECEIVING A SINGLE LINEAR POLARIZATION OF THE PULSAR RADIO EMISSION

Author:

Ulyanov O. M., ,Shevtsova A. I.,Yerin S. M., , ,

Abstract

Purpose: The studies of pulsars allow enriching our knowledge in determination of parameters of both the exotic electron-positron plasma in the pulsar magnetosphere with strong magnetic field and the ordinary ion-electron plasma of the interstellar medium, which exists in a weak magnetic field. To determine the parameters of the both plasma types it is reasonable to use polarization characteristics of a pulsed radio emission of pulsars. An accurate determination of these characteristics is quite a complex problem. For its solving, primarily we have to determine two parameters of the propagation medium – its dispersion and rotation measures. Their absolute values can be determined with the relative precision of 10-4, but the problem of rotation measure value sign determination arises. This sign depends on the interstellar magnetic field direction along the line of sight. Hear, a new method of rotation measure value sign determination is proposed. Design/methodology/approach: Muller polarization matrices are usually used for determination of such a propagation parameter as the rotation measure absolute value. When only one linear polarization is received, using of these matrices allows quite accurate determining the absolute value of the rotation measure, but not the sign of this parameter due to a certain symmetry of these matrices with respect to the direction of the linear polarization rotation plane. If we complement the system of equations, which determines the rotation measure value, with some new additional components, which take into account the contributions of the Earth ionosphere and magnetosphere to the rotation measure value, one can notice that this contribution is always positive in the Southern magnetic hemisphere (the majority of the Northern geographical hemisphere) and is always negative in the Northern magnetic hemisphere (the majority of the Southern geographical hemisphere). Moreover, the absolute value of this contribution is maximal at noon and minimal at midnight, when the concentration of ions in the Earth ionosphere is maximal and minimal, respectively. Accounting for these regularities allows to determine not only the absolute value of the rotation measure, but also its sign by means of two independent time-shifted estimations of the observed absolute value of this parameter for various ionization degrees of the Earth ionosphere. Findings: We show that using of additional equations, which take into account the contribution of the Earth ionosphere and magnetosphere to the value of the rotation measure parameter, allows full determination of this parameter accounting for the sign of this value even for the antennas, which can record a single linear polarization only. This approach allows to determine all polarization parameters of the pulsar radio emission as well as of the pulsed or continuum polarized radio emission of other cosmic sources. Conclusions: The paper presents the results of measurement of the rotation measure for the two closest to the Earth pulsars, namely J0814+7429 (B0809+74), J0953+0755 (B0950+08), and the comparison of the proposed technique for this parameter determination with other existing techniques. Key words: pulse, dispersion measure, rotation measure, plasma, polarization, pulsar, radio telescope

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka)

Subject

Electrical and Electronic Engineering,Space and Planetary Science,Physics and Astronomy (miscellaneous),Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3