Benzodiazepinе derivative methanindiazenone modulates lipid metabolism in the liver of rats with rotenone-induced Parkinson’s syndrome

Author:

Shtanova L.Ya., ,Vesеlsky S.P.,Yanchuk P.I.,Tsymbalyuk O.V.,Moroz O.F.,Reshetnik E.M.,Moskvina V.S.,Shablykina O.V.,Kravchenko О.V.,Khilya V.P., , , , , , , , ,

Abstract

Parkinson’s disease (PD) is a neurodegenerative condition for which the exact causes remain elusive, and no effective treatments currently exist. The pathogenesis of PD is believed to involve oxidative stress, mitochondrial dysfunction, and lipid metabolism disorders. A benzodiazepine derivative JM-20 has demonstrated protective effects on mitochondria in both neurons and peripheral tissues of rats with rotenoneinduced Parkinson’s syndrome (PS). This study aimed to analyze bile composition and assess the impact of a new benzodiazepine derivative, methanindiazenone, on lipid metabolism in the liver of rats subjected to the rotenone model of PS. The results indicated that, compared to the control group, bile concentration of phospholipids, cholesterol, cholesterol esters, and triglycerides decreased by 24.3, 26.2, 25.8, and 27.5%, respectively. With methanindiazenone treatment at doses of 0.5 and 1.0 mg/kg, all these metrics reverted to the control level. However, in the rotenone+methanindiazenone 2.0 mg/kg group, the levels of phospholipids, cholesterol, and cholesterol esters (except for triglycerides) surpassed the control values by 33, 28.1, 28.4 and 33.5%, respectively. Methanindiazenone positively impacted the motor behavior of rats with the rotenone model of PS and enhanced their survival rates. Therefore, at doses of 0.5 and 1.0 mg/kg, methanindiazenone not only improved lipid metabolism in the liver but also the overall well-being of rats with the rotenone model of PS. However, a 2 mg/kg dose of methanindiazenone displayed toxic effects, as seen from the increased content of phospholipids, cholesterol, and cholesterol esters in bile. Hence, methanindiazenone holds potential as a therapeutic agent for PS and possibly other neurodegenerative diseases related to lipid metabolism impairment, but its use should be limited to doses of 0.5 and 1.0 mg/kg.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3