Fabrication of CdS/CdTe Solar Cells by Quasiclosed Space Technology and Research of Their Properties

Author:

Semikina T. V.

Abstract

A quasiclosed space technology has been developed for the deposition of CdS and CdTe layers, while fabricating solar cells (SCs). Technological factors affecting the crystal lattice structure, the optical band gap width, and the conductivity in the CdS and CdTe layers are studied and analyzed. A technology to produce an ohmic contact with p-CdTe, by using the degenerate CuxS semiconductor, is proposed. The characteristics of SCs fabricated on substrates covered with various conducting films (Mo, ZnO, ZnO:Al) are analyzed. The measurement results of light and dark voltage-current characteristics testify to the better characteristics of ZnO and ZnO:Al films obtained by the atomic layer deposition from the viewpoint of their application in SCs. The optimum thicknesses of the CdS (67 nm), CdTe (about 1 /um), and CuxS (30 nm) layers, at which the best SC efficiency (n = 1.75÷1.89%) is obtained, are determined. The application of thin films in SC structures is shown to improve the characteristics of the latter.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka)

Subject

General Physics and Astronomy

Reference37 articles.

1. ZnO thin films obtained by atomic layer deposition as a material for photovoltaics.;Semikina;Ukr J Phys,2016

2. Solar cell efficiency tables (version 49).;Green;Prog Photovolt Res Appl,2017

3. Polycrystalline CdTe thin films for photovoltaic applications.;Bosio;Prog Cryst Growth Characterization,2006

4. Solar photovoltaics R&D at the tipping point: A 2005 technology overview.;Kazmerski;J Electron Spectrosc Relat Phenom,2006

5. Thin-film solar cells.;Aberle;Thin Solid Films,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3