“In-gap” Spectroscopy: Reflected-Wave Phase and Film Characterization

Author:

Turchin A. V.

Abstract

Optical methods that are used to characterize the state of a surface covered with films are based on the measurement of either the ratio between the complex reflection coefficients for mutually orthogonal light polarizations (ellipsometry) or the magnitudes of reflection coefficients themselves; afterward, the parameters of films such as their number, thicknesses, and transparencies can be determined by the fitting, while solving the corresponding inverse problem. In order to extend the set of quantities that can bemeasured experimentally, a method is proposed that allows the phase of the reflected light wave to be determined, by analyzing the spectral features for light reflected from a plane-parallel gap between the surface of analyzed specimen and the environment. In particular, the spectrum obtained, by using the “moving specimen” procedure, can be transformed into the spectral dependences of the magnitude and phase of the reflection coefficient. As a result, the inverse problem of finding the dielectric permittivity of a single-layer film is reduced to the solution of a linear matrix equation, which makes the proposed method more advantageous in comparison with the ellipsometric one, for which there is no direct relationships between the ellipsometric angles and the physical parameters of the film.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka)

Subject

General Physics and Astronomy

Reference32 articles.

1. 1. I.V. Masol, V.I. Osinskii, O.T. Sergeev. Information Nanotechnologies (Macros, 2011) (in Russian).

2. Optical, structural, and photocatalytic properties of nanosize titanium dioxide films deposited in magnetron discharge plasma.;Goncharov;Zh Tekhn Fiz,2014

3. Synthesis of nanocrystalline titanium dioxide films in a magnetron-type cylindrical gas discharge and their optical characterization.;Goncharov;Zh Tekhn Fiz,2010

4. 4. V. Lucarini, J.J. Saarinen, K.-E. Peiponen, E.M. Vartiainen. Kramers–Kr¨onig Relations in Optical Materials Research (Springer, 2005).

5. Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature.;Kitamura;Appl Opt,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3