Abstract
The influence of various factors that can affect the efficiency of pulsed barrier discharge treatment in the air of atmospheric pressure of a model sample of contaminated water in the droplet-film state was investigated. The impurity in the water was an organic dye (methylene blue) with an initial concentration of 50 mg / l. Water consumption was 2–4 l / min, the characteristic diameter of the droplets was 1.7 mm, and the film thickness at the electrodes was about 0.15 mm. The water was treated in a flat discharge chamber with gas gaps of 3.36 mm and glass dielectric barriers, and in addition in an ozonation chamber, which used ozone that had not previously been useful. The discharge was excited by short ~ 100 ns pulses from voltage up to 21 kV, which provided the current density amplitude up to 1.7 A / cm2 and their energy up to 140 mJ. The decomposition time of the impurity and the energy efficiency of the discharge depending on the pulse repetition frequency of 25–300 Hz were studied. The discharge had the highest energy efficiency at frequencies of 25-50 Hz, at which the energy yield, which corresponds to 50% decomposition of the impurity, reaches ≈270 g / kWh, and for 90% decomposition − 60 g / kWh. As the pulse energy increases, the transparency of the solution for ultraviolet light increases, which is associated with the splitting of stable benzene rings that is part of the impurity molecule. No noticeable effect of water and gas consumption (0.36-1.5 l / min) on the research results was found. References 16, figures 8.
Publisher
National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology
Reference15 articles.
1. Patrick Vanraes, Anton Y. Nikiforov and Christophe Leys. Electrical Discharge in Water Treatment Tech-nology for Micropollutant. Plasma Science and Technology. Progress in Physical States and Chemical Reactions. 2016. Chapter 15. Pp. 429−476. DOI: https://doi.org/10.5772/61830.
2. Muhammad Arif Malik. Water Purification by Plasmas: Which Reactors are Most Energy Efficient? Plasma chemistry and plasma processing. 2010. Issue 30. Pp. 21−31. DOI: https://doi.org/10.1007/s11090-009-9202-2 .
3. Bo Jiang, Jingtang Zheng, Shi Qiu, Qinhui Zhang, Zifeng Yan, Qingzhong Xue. Review on electrical dis-charge plasma technology for wastewater. Chemical Engineering Journal. 2014. Issue 236. Pp. 348-363.
4. David B. Miklos, Christian Remy, Martin Jekel, Karl G. Linden, Jorg E. Drewes €, Uwe Hübne. Evaluation of advanced oxidation processes for water and wastewater treatment − A critical review. Water Research. 2018. Vol. 139. Pp. 118−131.
5. Yavorovskiy N.A., Kornev Ya.I., Preis S.V., Pelchtsman S.S., Haskelberg M.B., Chen B.N. Active oxidiz-ing particles in water-air flow. Bulletin of the Tomsk Polytechnic Institute. 2006. Vol. 309. Issue 2. Pp. 108-113 (Rus).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献