Abstract
Диференціальні оператори D1( f )(z) = (1- |z|2 )δf (z) / δz і D2( f ) = D21 ( f ) на просторі голоморфних функцій в одиничному крузі D є інваріантними відносно композицій голоморфних функцій з дробово-лінійними функціями. Вони природним чином виникають у дослідженнях голоморфних функцій із класу Блоха β, який відіграє важливу роль в геометричній теорії функцій комплексної змінної. Відомо, що образи операторів Dj ( f ) , j =1,2, є ліпшицевими функціями відносно псевдогіперболічної метрики ρ(z,w) в одиничному крузі, а саме supfєβ || D1( f )(z)|-|D1( f )(w) ||/ ρ(z,w) = 3√ 3 / 2 . У даній роботі розв’язано екстремальну задачу про точне значення величини supf |D1( f )(z)-D2( f )(w)| / ρ(z, w), коли f пробігає клас інтегралів типу Коші, який, як добре відомо, є підкласом функцій Блоха.
Publisher
National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)
Reference8 articles.
1. Bonk, M., Minda, D. & Yanagihara, H. (1996). Distortion theorems for locally univalent Bloch functions. J. Anal. Math., 69, pp. 73-95. https://doi.org/10.1007/BF02787103
2. Bonk, M., Minda, D. & Yanagihara, H. (1997). Distortion theorems for Bloch functions. Pac. J. Math, 179, pp. 241-261. https://doi.org/10.2140/pjm.1997.179.241
3. Ghatage, P., Yan, J. & Zheng, D. (2000). Composition operators with closed range on the Bloch space. Proc. Amer. Math. Soc., 129, pp. 2039-2044. https://doi.org/10.1090/S0002-9939-00-05771-3
4. Xiong, C. (2003). On the Lipschitz continuity of the dilation of Bloch functions. Period. Math. Hung., 47, No. 1-2, pp. 233-238. https://doi.org/10.1023/B:MAHU.0000010824.30026.cd
5. Girela, D. (2001). Analytic functions of bounded mean oscillation. Proceedings of the Summer School Held Сomplex function spaces, Mekrijärvi, 1999 (pp. 61-170). Joensuun: Joensuun yliopistopaino.