Abstract
We investigate the Poisson algebras, in which the n-th hypercenter (center) has a finite codimension. It was established that, in this case, the Poisson algebra P includes a finite-dimensional ideal K such that P/K is nilpotent (Abelian). Moreover, if the n-th hypercenter of a Poisson algebra P over some field has a finite codimension, and if P does not contain zero divisors, then P is Abelian.
Publisher
National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)
Reference15 articles.
1. 1. Lichnerowicz, A. (1977). Les variétés de Poisson et leurs algèbres de Lie associées. J. Differential Geom., 12, No. 2, pp. 253-300. https://doi.org/10.4310/jdg/1214433987
2. 2. Weinstein, A. (1977). Lecture on symplectic manifolds. CBMS regional conference series in mathematics, No. 29. Providence, R.I: Amer. Math. Soc. https://doi.org/10.1090/cbms/029
3. 3. Berezin, F. A. (1967). Some remarks about the associated envelope of a Lie algebra. Funct. Anal. Appl., 1, No. 2, pp. 91-102. https://doi.org/10.1007/BF01076082
4. La structure de Poisson sur l'algèbre symétrique d'une algèbre de Lie nilpotente;Vergne;Bull Soc Math France,1972
5. 5. Braconnier, J. (1977). Algèbres de Poisson, C.R. Acad. Sci., A, 284, No. 21, pp. 1345-1348.