Abstract
A. Horn and A. Tarski initiated the abstract theory of measure algebras. Independently V. Sushchansky, B. Oliynyk and P. Cameron studied the direct limits of Hamming spaces. In the current paper, we introduce new examples of locally standard measure algebras and complete the classification of countable locally standard measure algebras. Countable unital locally standard measure algebras are in one-to-one correspondence with Steinitz numbers. Given a Steinitz number s such measure algebra is isomorphic to the Boolean algebra of s-periodic sequences of 0 and 1. Nonunital locally standard measure algebras are parametrized by pairs (s, r), where s is a Steinitz number and r is a real number greater or equal to 1. We also show that an arbitrary (not necessarily locally standard) measure algebra is embeddable in a metric ultraproduct of standard Hamming spaces. In other words, an arbitrary measure algebra is sofic.
Publisher
National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)
Reference13 articles.
1. Horn, A. & Tarski, A. (1948). Measures in Boolean algebras. Trans. Amer. Math. Soc., 64, pp. 467-497. https://doi.org/10.2307/1990396
2. Algebraic characterizations of measure algebras;Jech;Proc Amer Math Soc,2008
3. Maharam, D. (1947). An algebraic characterization of measure algebras. Ann. Math. Ser. 2., 48, pp. 154-167. https://doi.org/10.2307/1969222
4. Vershik, A. M. (1995). Theory of decreasing sequences of measurable partitions. St. Petersburg Math. J., 6, No. 4, pp. 705-761.
5. Steinitz, E. (1910). Algebraische Theorie der Körper. J. Reine Angew. Math., 137, pp. 167-309. https://doi.org/10.1515/crll.1910.137.167