https://fz.kiev.ua/index.php?abs=2034

Author:

,Moroz O.,Basovska O., ,Zholos A.,

Abstract

Investigation of the mechanism of neuronal communication underlies the fundamental discoveries that promote health. The studies of oxytocin signaling in neurons from or within different brain areas are directed to explore the role of this neurohormonal modulator in the regulation of synaptic transmission and plasticity, neuronal excitability that contributes to the reproduction, social behavior and learning capacity, anxiety, inflammation and differentiation in the brain. Oxytocin is synthesized in supraoptic and paraventricular nuclei of the hypothalamus and when secreted into the bloodstream from the posterior pituitary, it produces a significant effect on uterine contraction and lactation. At the same time this nonapeptide being released within the limbic system and brain cortex modulates neuronal activity by affecting ion channels on their membranes. The oxytocin receptor is primarily coupled to Gq/11 proteins causing phospholipase C activation, Ca2+ release and store-operated Ca2+ entry. These pathways are central for the regulation of the activity of different types of TRP channels, especially of the canonical subfamily (TRPC). Here we highlight the link between oxytocin signaling, which is particularly well investigated in the myometrium, and receptor-operated TRPC4 and multimodal TRPV4 ion channels that participate in oxytocin-dependent regulation of the uterine smooth muscle contractility under various conditions. Importantly, similarly to oxytocin, these channels have been implicated in neuropathic pain behavior, anxiety, fear and depression. Since similar signal transduction pathways are likely to be functional in neuronal cells, we propose that future studies of oxytocin effects in the CNS should also consider the role of these Ca2+-permeable channels.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3