Martensitic αʺ-Fe16N2-Type Phase of Non-Stoichiometric Composition: Current Status of Research and Microscopic Statistical-Thermodynamic Model

Author:

Radchenko Taras, ,Gatsenko Oleksandr,Lizunov Vyacheslav,Tatarenko Valentyn, , ,

Abstract

The literature (experimental and theoretical) data on the tetragonality of martensite with interstitial–substitutional alloying elements and vacancies are reviewed and analysed. Special attention is paid to the studying the martensitic αʺ-Fe16N2-type phase with unique and promising magnetic properties as an alternative to the rare-earth intermetallics or permendur on the world market of the production of permanent magnets. The period since its discovery to the current status of research is covered. A statistical-thermodynamic model of ‘hybrid’ interstitial–substitutional solid solution based on a b.c.t. crystal lattice, where the alloying non-metal constituents (impurity atoms) can occupy both interstices and vacant sites of the host b.c.c.(t.)-lattice, is elaborated. The discrete (atomic-crystalline) lattice structure, the anisotropy of elasticity, and the ‘blocking’ and strain-induced (including ‘size’) effects in the interatomic interactions are taken into account. The model is adapted for the non-stoichiometric phase of Fe–N martensite maximally ordered by analogy with αʺ-Fe16N2, where nitrogen atoms are in the interstices and at the sites of b.c.t. iron above the Curie point. It is stressed an importance of adequate data on the available (in the literature) temperature- and concentration-dependent microscopic energy parameters of the interactions of atoms and vacancies. The features of varying (viz. non-monotonic decreasing with increasing temperature) the relative concentration of N atoms in the octahedral interstices of b.c.t. Fe, and therefore, the degree of its tetragonality (correlating with this concentration) are elucidated. Within the wide range of varying the total content of introduced N atoms, the ratio of the equilibrium concentration of residual site vacancies to the concentration of thermally activated vacancies in a pure b.c.c. Fe is demonstrated at a fixed temperature.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka)

Subject

Metals and Alloys,Surfaces, Coatings and Films,Fluid Flow and Transfer Processes,Condensed Matter Physics,Materials Science (miscellaneous),Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3