1. Yavuz Ege, Adnan Kakilli, Osman Kılıç, Hüseyin Çalık, Hakan Çıtak, Sedat Nazlıbilek, Osman Kalender. Performance Analysis of Techniques Used for Determining Land Mine. Available: https://www.scirp.org/pdf/IJG_2014092616421483.pdf
2. Yu Zhang, Dryver Huston, Tian Xia. Underground Object Characterization based on Neural Networks for Ground Penetrating Radar Data. Available:https://www.uvm.edu/sites/default/files/media/SPI_Smart_Structure-NDE_Conference_2016_0.pdf
3. S. Tubaro, P. Bestagini, S. Lameri, F. Lombardi, M. Lualdi. Landmine Detection from GPR Data Using Convolutional Neural Networks. Available: https://www.scipedia.com/public/Tubaro_et_al_2018a
4. Namgyu Kim, Kideok Kim, Yun-Kyu An, Hyun-Jong Lee & Jong-Jae Lee. Deep learning-based underground object detection for urban road pavement. Available: https://www.researchgate.net/profile/Yun-Kyu-An/publication/329819520_Deep_learning-based_underground_object_detection_for_urban_road_pavement/links/5c91a6fc299bf11169396959/Deep-learning-based-underground-object-detection-for-urban-road-pavement.pdf
5. Klymenko I.E., Kozlenko O.V., Matviychuk O.V. New approaches for non-contact detection of mines. Available: https://ela.kpi.ua/bitstream/123456789/47547/1/IRNTO_XIX-2021-3-176-113-114.pdf