Quantum chemical modeling of the structure and properties of SnO2 nanoclusters

Author:

Filonenko O. V., ,Grebenyuk A. G.,Lobanov V. V., ,

Abstract

By the method of density functional theory with exchange-correlation functional B3LYP and basis set 3‑21G (d), the structural and energy characteristics have been considered of the molecular models of SnO2 nanoclusters of different size and composition with the number of Sn atoms from 1 to 10. Incompletely coordinated surface tin atoms were terminated by hydroxyl groups. It has been shown that the Sn–O bond length in nanoclusters does not depend on the cluster size and on the coordination number of Sn atoms, but is determined by the coordination type of neighboring oxygen atoms. Namely, the bond length Sn–O(3) (@ 2.10 Å) is greater than that of Sn–O (2) (@ 1.98 Å). The calculated values of Sn–O (3) bond lengths agree well with the experimental ones for crystalline SnO 2 samples (2.05 Å). The theoretically calculated width of the energy gap decreases naturally with increasing cluster size (from 6.14 to 3.46 eV) and approaches the experimental value of the band gap of the SnO 2 crystal (3.6 eV). The principle of additivity was used to analyze the energy characteristics of the considered models and to estimate the corresponding values for a cassiterite crystal. According to this principle, a molecular model can be represented as a set of atoms or atomic groups of several types that differ in the coordination environment and, therefore, make different contributions to the total energy of the system. The calculated value of the atomization energy for SnO2 is 1661 kJ/mol and corresponds satisfactorily to the experimentally measured specific atomization energy of crystalline SnO2 (1381 kJ/mol). It has been shown that a satisfactory reproduction of the experimental characteristics of crystalline tin dioxide is possible when using clusters containing at least 10 state atoms, for example, (SnO2)10×14H2O.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Reference40 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3