Synthesis and catalytic properties of nitrogen-containing carbon nanotubes

Author:

Sementsov Yu. I., ,Cherniuk O. A.,Zhuravskyi S. V.,Bo Wang,Voitko K. V.,Bakalinska O. M.,Kartel M. T., , , , , ,

Abstract

Nitrogen-containing carbon nanotubes (CNTs) were synthesized by the CVD method on oxide catalysts of Al-Fe-Mo-O by adding acetonitrile or ethylenediamine to the carbon source (propylene), or completely replacing it, as well as impregnating the original CNTs with urea, followed by heat treatment. The structure of nitrogen-containing CNTs (N-CNT) was characterized by the method of Raman scattering, transmission electron microscopy (TEM), differential thermal and gravimetric analysis (DTA, DTG) and X-ray photoelectron spectroscopy (XPS). The influence of the synthesis method on the number and chemical state of nitrogen heteroatoms in the structure of the carbon matrix is found. According to the TEM, nitrogen-containing CNTs have a characteristic bamboo-like structure, which is less perfect compared to the structure of the original CNTs: the characteristic Raman bands (G and D) are shifted to higher frequencies, their half-width and band D intensity increase relative to G. This is also manifested in the lower thermal stability of nitrogen-containing CNTs. According to the XPS, the direct synthesis of nitrogen-containing CNTs increases the total content of nitrogen atoms and the proportion of pyrrolic and quaternary nitrogen against the background of a significant decrease in the amount of pyridinic form. This can be explained by the fact that nitrogen is evenly distributed throughout the carbon matrix of CNTs, and during nitriding of CNTs with urea, nitrogen is included mainly in the surface layers and defects, because the pyridine form is characteristic of the edge location of the nitrogen atom in the graphene plane.The catalytic effect of multilayer nitrogen-containing carbon nanotubes (N-CNT) on the kinetics of decomposition of hydrogen peroxide in aqueous solutions at different pH values is considered. It is concluded that the method of direct synthesis of nitrogen-containing CNTs allows to obtain more catalytically active carbon nanotubes containing more nitrogen, mainly pyrrolic and quaternary type. It has been found that regardless of the method of synthesis, the maximum catalytic activity in the decomposition of hydrogen peroxide is observed at pH 7.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3