Author:
Gorbyk P. P., ,Petranovska A. L.,Kusyak N. V.,Korniichuk N. M.,Kusyak A. P.,Oranska O. I.,Kulyk T. V.,Palianytsia B. B.,Dudarko O. A., , , , , , , ,
Abstract
One of the most widely used antitumor chemotherapeutic drugs is “Cisplatin” (active substance - cis-diaminodichloroplatinum), the side effects of which are the cumulative ototoxic, nephrotoxic and neurotoxic effects. The use of drug carrier systems for targeted delivery and adsorbents for extraction, in particular magnetite-carbon nanocomposites, will minimize unwanted toxic effects without reducing the therapeutic effect of cisplatin. For this purpose, a nanocomposite (NCs) of Fe3O4/Al2O3/С with a carbon surface was synthesized, where a layer of alumina protects magnetite during the pyrolysis of carbohydrates. The synthesized samples were characterized by TEM, XRD, mass spectrometry methods, magnetic properties and specific surface area were studied. It has been found that the used heat treatment mode (T = 500 °С, argon medium) is sufficient for complete carbonization of sucrose and preserves the phase of magnetite which does not lead to deterioration of magnetic characteristics. The results of TEM studies and magnetic measurements indicate the formation of the Fe3O4/Al2O3/С nanocomposite of the core-shell type. The adsorption of Cisplatin on the surface of NCs Fe3O4/Al2O3/С was performed and the adsorption process dependent on the contact time, pH of the solution and cisplatin concentration was studied. The experimental results of kinetic studies were analyzed for compliance with the theoretical models of Boyd and Morris-Weber, models of pseudo-first and pseudo-second orders. Langmuir and Freundlich isotherm models were used to model adsorption processes. The limiting factor of adsorption is the external diffusion mass transfer processes, which correlates with the calculated parameters of the pseudo-first-order model (r2 = 0.985). The correlation of theoretical and practically obtained values of adsorption capacity indicates the possibility of using the Freundlich model to describe the adsorption of Cisplatin on the surface of Fe3O4/Al2O3/C.
Publisher
National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献