Thermal and electrical characterization of polymer/carbon nanotubes composites with polyvinyl butyral matrix

Author:

Trachevskiy V. V., ,Kartel M. T.,Bo Wang, ,

Abstract

The rapid development of modern technology requires new materials with predetermined properties. There is a need for materials with ultra-high strength, hardness, other characteristics and a common combination of these properties. The work was aimed at solving the problem of creating polymer composite materials that combine high physical and mechanical characteristics and thermal and electrical conductivity. Information was given on fillers, the use of which gives polymers thermal and electrical properties. Shown are the most commonly used in the composition of polymer composites fillers, advantages and disadvantages of each of the fillers. It was established that the use of carbon nanotubes allows obtaining polymer composites with the required performance characteristics. One of the problems when using nanoparticles as modifiers of reactive oligomers is their uniform distribution in the volume of the polymer matrix. Heterogeneity and uneven distribution of the dispersed phase can lead to dangerous defects in the material, so the technology of combining the nanofillers and the polymer matrix plays an important role. The possibility of obtaining polyvinyl butyral structured with carbon nanotubes in the process of its synthesis in the presence of carbon nanotubes was shown and the technological conditions of In situ synthesis are developed. Experimental samples of polyvinyl butyral structured with carbon nanotubes with high thermal and electrically conductive characteristics were obtained. Under optimal conditions of synthesis, in the obtained PVB samples structured with carbon nanotubes, the electrical conductivity of the composite increases by five orders of magnitude due to the high electrical conductivity of CNTs. For the obtained PVB, structured with carbon nanotubes, the fracture stress was significantly (by 62 %) increased, and the fracture deformation is reduced by approximately 38 %. The decrease in the deformation of the fracture during compression indicates an increase in the fragility of the polymer with the inclusion of CNTs. The prospects for the synthesis of polyvinyl butyral in the presence of carbon nanotubes to obtain a composite with a high level of achieved electrical and thermal conductivity were shown.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka)

Reference15 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3