1. Malakhov, A.N. (1978). Kumuliantnyi analiz sluchainykh negaussovykh protsessov i ikh preobrazovanii [Cumulant analysis of random non-Gaussian processes and their transformations]. Moscow: Sovetskoie radio. (in Russian).
2. Kunchenko, Yu.P. (2001). Polinomialnyie otsenki parametrov blizkikh k gaussovskim sluchainykh velichin. Ch. 1. Stokhasticheskiie polinomy, ikh svoistva i primeneniia dlia nakhozhdeniia otsenok parametrov [Polynomial Parameter Estimations of Close to Gaussian Random variables. Part 1. Stochastic Polynomials, Their Properties and Applications for Finding Parameter Estimations]. Cherkassy: ChITI. (in Russian).
3. Krasilnikov, A.I., Beregun, V.S. & Polobyuk, T.A. (2019). Kumuliantnyie metody v zadachakh shumovoi diagnostiki teploenergeticheskogo oborudovaniia [Cumulant methods in the problems of noise diagnostics of heat-and-power equipment]. A.I. Krasilnikov [Ed.]. Kyiv: Osvita Ukrainy. (in Russian)
4. On the meaning and use of kurtosis;De Carlo;Psychological Methods 2(3),1997
5. Blanca, M.J., Arnau, J., Lopez-Montiel, D., Bono, R. & Bendayan, R. (2013). Skewness and kurtosis in real data samples. Methodology, (9). 78-84. https://doi.org/10.1027/1614-2241/ a00005