Abstract
Recently, various approaches have been successfully used in information security tools to detect harmful activity, including artificial intelligence technologies. But only the signature approach can completely eliminate recognition errors. That is especially important for critical infrastructure objects. One of the main disadvantages of signature tools is the high computational complexity. Therefore, the developers of such systems turn to hardware implementation, primarily on a reconfigurable platform, that is, using FPGAs. The ability to quickly reprogram FPGAs gives reconfigurable security systems unprecedented flexibility and adaptive possibilities. There are many different approaches to the construction of hardware pattern matching circuits (that are parts of signatures). Choosing the optimal technical solution for recognizing a specific set of patterns is a non-trivial task. For a more efficient distribution of patterns between components, it is necessary to solve an optimization task, the objective function of which includes the quantitative technical characteristics of hardware recognition schemes. Finding these values at each step of the algorithm by performing the full digital circuit synthesis procedure by the CAD is an unacceptably slow approach. The method proposed in this study for the accelerated quantitative evaluation of components of reconfigurable signature-based security systems, based on the use of the so-called evaluation functions, allows solving the problem.
Publisher
National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)
Reference23 articles.
1. Smyth, B. (2003), Computing Patterns in Strings, Pearson Addison Wesley, Essex, England.
2. Chen, H., Chen, Y. and Summerville, D.H. (2011), "A Survey on the Application of FPGAs for Network Infrastructure Security", IEEE Communications Surveys and Tutorials, Vol. 13, 4, pp. 541-561, available at: https://doi.org/10.1109/surv.2011.072210.00075.
3. Hilhurt, S.Ya. (2013), "Reconfigurable Accelerators: Analytical Review", Elektronne modelyuvannya, Vol. 35, no. 4, pp. 49-72.
4. Abdulhammed, R., Faezipour, M. and Elleithy, K.M. (2016), "Network Intrusion Detection Using Hardware Techniques: A Review", IEEE Long Island Systems, Applications and Technology Conference (LISAT'16), April 2016, pp. 1-7, available at: https://doi.org/ 1109/ LISAT.2016.7494100.
5. Jyothi, V., Addepalli, S.K. and Karri, R. (2018), "DPFEE: A High Performance Scalable Pre-Processor for Network Security Systems", IEEE Transactions on Multi-Scale Computing Systems, Vol. 4, no. 1, pp. 55-68, available at: https://doi.org/10.1109/tmscs.2017.