Formation of long-flame coal microporous structure under alkali activation. Influence of temperature

Author:

,Kucherenko V. O.,Таmarkina Yu. V., ,Abakumov O. O.,

Abstract

The CMs were obtained in argon in three stages: 1) heating (4 grad/min) to the specified temperature t in the range of 350–825 °С; 2) isothermal exposure 1 h; 3) cooling, washing from alkali and drying. Samples are denoted as CM(t). The CM yield (Y, %) and CMs elemental composition are determined. Based on low-temperature (77 K) nitrogen adsorption-desorption isotherms, integral and differential dependences of the specific surface area SDFT (m2/g) and pore volume V (cm3/g) on the average pore diameter (D, nm) were calculated by 2D-NLDFT-НS method (SAIEUS program). They were used to define volumes of ultramicropores (Vumi), supermicropores (Vsmi) and micropores (Vmi). The total pore volume V was calculated from the nitrogen amount adsorbed at a relative pressure p/p0 ~ 1.0. The S values of ultramicropores (Sumi), supermicropores (Ssmi) and micropores (Smi) were similarly determined. The CM yield was established to decrease linearly (R2 = 0.979) from 70.2 to 45.3 % with an increase in temperature from 350 to 825 °С. The carbon content decreases to a minimum value at 500 °С (72.6 %), and then increases to a maximum value (87.5 %) at 825 °С; the oxygen content changes antibatically. Two temperature regions were identified: region I (≤ 500 °С) of increasing the oxygen content due to reactions in which KOH acts as a donor of O atoms; region II (≥ 500 °C) of dominating the thermal destruction of functional groups (carboxyl, lactone, ester) with the release of CO and CO2, and condensation increasing the size of polyarenes of the CM secondary framework and formsng single Сar-Саr bonds between them. The CM(350) sample was found to contain only mesopores (D ≥ 10 nm) and macropores. An activation temperature increase to 400 °C initiates the additional formation of small-diameter micropores and mesopores. In samples CM(400) - CM(825), the main portion of newly formed pores falls on pores with D ≤ 5 nm. With increasing temperature, the micropores volume increases almost linearly (R2 = 0.992). The Vumi and Vsmi volumes increase up to 600 °C. At higher temperatures the ultramicropores volume decreases due to transforming ultramicropores (D ≤ 0.7 nm) into supermicropores (D = 0.7–2.0 nm). Portion of the ultramicropores volume changes with a maximum (23.9 %) in the CM(600) sample. The SBET specific surface area linearly (R2 = 0.992) increases with temperature up to 1729 m2/g. The SDFT values are close to SBET, but noticeably lower (1514–1530 m2/g) for CM(785)-CM(825). The micropores specific surface area increases to 1415 m2/g, and ultramicropore surface Sumi changes extremely with a maximum (526 m2/g) for the CM(600) sample, which should be expected based on the temperature dependence of the Vumi parameter. The decrease in Sumi values after the maximum is compensated by an increase in the supermicropore surface. Such an effect - the redistribution of pores by size in the microporous range (D ≤ 2 nm) with an increase in the alkaline activation temperature is not described in the literature. The portion of the micropores surface is dominant (92.6–97.0 %) in samples prepared at t ≥ 450 °C. The portion of the ultramicropore surface is maximum (56.3 %) in CM(500). Pores are revealed that do not form at all at 450–750 °C. These are supermicropores (D = 0.96–2.00 nm) and mesopores of small diameters (D = 2.0–2.82 nm). This effect was assumed to be due to the properties of the CM supramolecular framework, which is formed from polyarene fragments of the initial and activated coals having polyarenes with diameters of the same order (1.68–2.54 nm).

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3