Synthesis and study on antimicrobial properties of hydrogel materials for maxillo-facial surgery

Author:

,Samchenko Yu. M.,Dybkova S. M., ,Reznichenko L. S., ,Kernosenko L. O., ,Gruzina T. G., ,Poltoratska T. P., ,Liutko O. B., ,Vitrak K. V., ,Podolska V. I., ,Vorotytskyi P. V.,

Abstract

Artificial implants are a favorable environment for bacterial adhesion and subsequent biofilm formation, thereby accelerating the development of infection in the area of implant incorporation. Despite significant progress in the development of various endoprostheses over the past decades, bacterial periprosthetic infection is one of the main factors leading to complications in their use, prolongation of rehabilitation, and significant economic losses. The present work is devoted to the creation of hybrid hydrogel nanocomposites with complex antimicrobial action for endoprosthetics in the maxillofacial region and for filling postoperative cavities (primarily after tumor removal). These nanocomposites were created on the basis of pre-synthesized spongy polyvinylformal with encapsulated gold nanoparticles, the pore space of which was partially filled with pH-sensitive hydrogels based on acrylic acid (or copolymers based on acrylamide and acrylic acid) with sorbed Albucid. The structure of the synthesized hybrid hydrogel materials was confirmed by IR spectroscopy. Studies of the kinetics of hydrogel swelling in buffer solutions with different pH values have shown that the sample filled with a copolymer of acrylamide and acrylic acid with their ratio 95:5 has the optimal properties for preserving the geometric dimensions of the material for endoprosthetics, while in the case of incorporation of 100 % acrylic acid, the degree of swelling of the material (and, respectively, its dimensions) can vary significantly with a change of рН. Antimicrobial effect of the developed hybrid hydrogel materials was investigated using the following bacterial cultures: Escherichia coli ATCC 25922, Enterococcus faecalis ATCC 29213, Staphylococcus aureus ATCC 25923, and Pseudomonas aeruginosa ATCC 27853. The antibacterial effect of polyvinylformal-based composites with incorporated gold nanoparticles that were saturated with Albucid on all test microorganisms was demonstrated (growth inhibition zones ranged from 15 to 35 mm), which will prevent microbial contamination of the developed hybrid hydrogel material when it is used in endoprosthesis.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3