Investigation of radiation resistance of adsorbents using the 90Sr – source

Author:

,Sych O. Ya.,Kilivnik Yu. M., ,Pop M. M., ,Vasylyeva H. V., ,Lazur V. Yu., ,Okunev O. H.,

Abstract

Purifying aqueous solutions from radioactive contamination is an extremely relevant scientific topic today. Many organic and inorganic adsorbents can be recommended for the adsorption of heavy metal ions and radionuclides from aqueous solutions, or as carriers for storage and disposal of radioactive waste. Since radionuclides are sources of ionizing radiation, the radiation resistance of the adsorbent is an important characteristic. These studies aim to investigate the titanium silicate behavior and its adsorption properties' changes or their invariability in the field of intense β-radiation. Experimental techniques describe the synthesis of titanium silicate adsorbent by sol-gel method and the study of its adsorption capacity toward Ba2+ cations. The adsorption of Ba2+ cations was investigated under batch conditions with neutral pH of the solution. Initial and residual concentrations of Ba2+ cations were controlled by direct complexometric titration with Na-EDTA with Eriochrom Black T as an indicator. The study of the radiation resistance of the adsorbent to high-energy β-radiation was performed using a 90Sr-90Y β- - source “Sirius” installed in the Microtron Laboratory of the Uzhhorod National University. The distance from the source to the adsorbent samples was 20 cm. The flux of electrons at this distance was 108 el/cm2‧per second. The maximum energy of beta particles was 0.456 MeV for 90Sr and 2.28 MeV for 90Y. The maximum duration of exposure was 21 days, which corresponds to 1310 Gy. Raman spectroscopy of irradiated and nonirradiated samples of TiSi was performed using a Raman spectrometer XploRA PLUS installed in the Center for Collective Use of Scientific Equipment “Laboratory of Experimental and Applied Physics” of Uzhhorod National University. Results consist of kinetic of Ba2+ adsorption by titanium silicate and irradiated titanium silicate; isotherm of Ba2+ adsorption and Raman spectrum of nonirradiated, irradiated titanium silicate (TiSi) and TiSi after Ba2+ adsorption. Results showed that the value of the maximal adsorption was 140.5±9.2 mg/g (6.55 %) under a confidence level of 95 %. The adsorption values of barium ions by irradiated and non-irradiated titanium silicate coincide. This indicates that the adsorption properties of this adsorbent do not change under the influence of such a radiation dose. The Raman spectra of irradiated and non-irradiated titanium silicate coincide, while they do not identify free radicals, or ionic formations, which would indicate a change in the properties of the adsorbent under the influence of beta radiation. It can be argued that this adsorbent is radiation-resistant to beta-radioactivity, with a radiation dose of 1310 Gy. The main conclusion of the present work is that the studied sample of titanium silicate is radiation-resistant. It can withstand a radiation dose of 1310 Gy without changing its adsorption properties. Titanium silicate can be used for the adsorption of strontium radionuclides, it can be a carrier for the disposal of radioactive waste.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3