Removal of cesium and strontium ions from aqueous solutions using metakaolin based geopolymers

Author:

,Tarnovsky D. V.,Fedoryshyn O. S., ,Vyshnevskyi O. A., ,Romanova I. V.,

Abstract

The aim of presented work was to synthesize geopolymers based on the metakaolin and to determine their adsorption capability in the process of cesium and strontium ions removal from the aqueous solutions. New approaches were proposed for obtaining the two samples of geopolymers in techologically suitable forms. Morphology of materials was investigated by means of X-ray fluorescence analysis (XRF), low-temperature nitrogen adsorption/desorption and scanning electron microscopic studies (SEM). As it follow from the data of XRF analysis, SiO2 and Al2O3 oxides found to be the major components in all samples investigated (~ 54–84 wt. %). As was determined by SEM studies, geopolymers consisted from nanosized particles, amorphous geopolymers binder and unreacted kaolin. It has been found that all samples involve the mesopores with approx. 1–40 nm radii. The greatest specific surface area calculated by the Brunauer-Emmet-Teller (BET) method had the sample obtained in the forms of spherical rods (SBET = 88 m2/g) that about 10 times greater than for initial kaolin taken for synthesis. The ion exchange capacities of materials in the process of Cu2+, Cs+ and Sr2+ removal from water solution were determined and it was found that these properties depends on the method of materials obtaining. Data showed that the geopolymers were more effective for removal the desired ions than initial kaolin. The greatest adsorption capacity towards cesium ions was received on the samples obtained in forms of pyramids and was reached 1.75 mmol/g. Experimental data were fitted into the Langmuir models and the main Langmuir constants were calculated. When analysing the data of investigation with comparing the literature data it was noted that geopolymers obtained can be used in adsorption technology for purification of water from radionuclides as technologically suitable sorbents.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3