A study on the adsorption capacity of carbon materials obtained from different plant raw materials

Author:

,Efremov O. O.,Kusturov V. V., ,Loginova O. B., ,Diyuk V. E., ,Starik S. P.,

Abstract

The aim of the work was to investigate the possibilities of obtaining activated carbon materials (AC) with controlled nanoporosity dependent on the raw materials used by involving an innovative method of its production and confirming the effect of reducing the density of the liquid under the action of the adsorption potential of the pore walls by means of modeling by the Boltzmann lattice method within the framework of a two-dimensional model. The results of the study showed that depending on the raw material used (chips of various hardwood species) and the method of its primary processing (involving an innovative method of its production, shear deformation, in particular), it is possible to obtain AB with a different ratio of micro- and mesopores, from almost completely microporous samples to samples with developed mesoporosity. It is shown that during carbonization, the organic matter that blocked the pores of the tubular structure is removed, forming open holes. Data infrared (IR) Fourier spectroscopy confirm that the formed surface of the micro-mesoporous sorbent must actively interact with polar and non-polar adsorbates with the help of surface functional groups, which corresponds to the results obtained in the work on the structural and sorption parameters of AB. The liquid density distribution along the pore axis of the mesoporous matrix was calculated by modeling using the Boltzmann lattice method, dependent on the initial wetting angle and capillary size. It is shown that in nanopores of small size (10 nm) the density of the liquid phase gradually decreases and at a certain depth of the pore its jump-like drop occurs, which reflects the presence of a phase transition to intense vaporization. So, the mechanism of purification of aqueous solutions from harmful impurities by nano-sized pores due to the effect of reducing the density of the liquid under the action of the adsorption potential of the pore walls has been confirmed. The micro-mesoporous AB obtained in the work can be used for the production of a wide range of matrix and composite materials with controlled nanoporosity. They are promising sorption materials, as they are characterized by lower diffusion complications during adsorption. And the effect of reducing the density of the liquid under the influence of the adsorption potential of the pore walls well explains the possible mechanism of cleaning contaminated aqueous liquids with the help of a mesoporous matrix.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Reference15 articles.

1. 1. Kurtov V.D. Water treatment: Handbook. Ed. S.E. Belikova. (Moskov: Aqua-Term, 2007). [in Russian].

2. 2. Khilchevsky V.K. Water supply and drainage: hydroecological aspects: Textbook. (Kyiv: VOC "Kyiv University", 1999). [in Ukrainian].

3. 3. Kienle H., Bäder E. Activated Carbon and its Industrial Application. (Stuttgart: Ferdinand Enke Verlag, 1980). [in Russian].

4. 4. Diyuk V.E. Carbon sorbents. Production, structure and properties: academic manual KNU. (Kyiv: VOC "Kyiv University", 2017). [in Ukrainian].

5. 5. Belyaev E.Yu. Production and use of wood activated carbons for environmental purposes. Chemistry of Plant Raw Materials. 2000. 2: 5. [in Russian].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3