Influence of mechanochemical treatment of a mixture of two oxides based on TiO2 on the physico-chemical and photocatalytic properties of the obtained composites in the degradation of metronidazole

Author:

Kiziun O.V.ORCID, ,Sachuk O.V.ORCID,Zazhigalov V.O.ORCID,Kotynska L.Yo.ORCID, , ,

Abstract

The effect of mechanochemical treatment of oxide composites based on TiO2 (TiO2/ZnO, TiO2/ZrO2, TiO2/MgO, TiO2/SnO2, TiO2/Nb2O5 with a molar ratio of 1:1) on their physical and chemical properties was investigated. It is shown that this treatment leads to a change in the crystal structure of the initial oxides without the formation of new phases, a significant grinding of particles, which is sometimes accompanied by amorphization of both or one of the oxides. As a result of mechanochemical treatment, the specific surface of the composites increases, except for the TiO2/Nb2O5 sample for which grinding is accompanied by agglomeration, which leads to a some decrease in the specific surface. It was established that as a result of the treatment, the morphology of the surface of the compositions changes, and in some cases the elements are redistributed in the near-surface layer. A significant decrease in the size of oxide particles leads to the formation of zones of dense contact between oxides in the composite. The photocatalytic properties of the original compositions and samples after their mechanochemical treatment in the reaction of degradation of metronidazole under ultraviolet radiation were established. It is shown that the photoreaction rate constant and the degree of metronidazole degradation do not depend on the band gap width, which is explained by the greater influence of local activation on the photoprocess than the collective properties of the solid body. It was established that a mixture of titanium oxide with another oxide leads to the formation of an effective catalyst for the photodegradation of metronidazole with a transformation degree of 95-98 % (after 5 hours of reaction), which is 4-7 % higher than that of the original titanium oxide.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3