Fabrication of proton exchange membrane for non-humidified fuel cells based on polyimide Matrimid® and hydrophobic protic ionic liquid

Author:

Rogalsky S.P.ORCID, ,Tarasyuk O.P.ORCID,Cherniavska T.V.ORCID,Babkina N.V.ORCID,Dzhuzha O.V.ORCID,Shybyryn O.V.ORCID,Makhno S.M.ORCID, , , , ,

Abstract

New proton exchange membrane based on polyimide Matrimid® (PI) and hydrophobic protic ionic liquid, 1-methylimidazolium bis(trifluoromethylsulfonyl)imide (MIM-TFSI), has been prepared by casting from methylene chloride/dimethylformamide solution. Infrared analysis revealed physicochemical interactions between 1-methylimidazolium cations and imide groups of PI. The results of mechanical testing indicate significantly reduced tensile strength of PI/MIM-TFSI composite membrane compared to neat polymer. Moreover, the dynamical mechanical analysis results revealed sharp drop in storage modulus (E´) of the polymer film above 60 °C. To improve the elastic properties of the membrane, PI was successively cross-linked with polyetheramine Jeffamine® D-2000 (10 mol. %) in methylene chloride/dimethylformamide solution, as well as in solid film at 100 °C. This approach allowed to prepare PI/Jeffamine/MIM-TFSI (70 wt. %) composite film which has an acceptable E' value of 210 MPa at 140 °C. According to thermal gravimetric analysis data, PI/Jeffamine/MIM-TFSI composite has a thermal degradation point (i.e. 5 % weight loss) of 286 °C. The ionic conductivity of PI/Jeffamine/MIM-TFSI composite membrane is around 10–4 S/cm at room temperature and reaches the minimal level of 10–3 S/cm, required for fuel cell applications, above 100 °C. Overall, the results of this study indicate that the cross-linking of polyimide Matrimid with flexible polyetheramine Jeffamine is an efficient approach for preparing dense composite membrane with high content of the protic ionic liquid. Such polymer-electrolyte membrane has the reasonable combination of good stiffness, thermal stability, and ionic conductivity and therefore is a promising candidate for use in fuel cells operating at elevated temperatures in water-free conditions.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3