Activation of C–H bonds of normal alkanes in sulfuric acid solutions of Mn(III)/Mn(II)

Author:

Volkova L.K.ORCID, ,Opeida I.A.ORCID,

Abstract

One of the most important directions of establishing the mechanisms of activation of C–H bonds, both in saturated and aromatic hydrocarbons in aqueous and sulfuric acid solutions of oxidants, metal complexes and radicals, is to study the kinetics of reactions and the influence of temperature, environment, nature of reagents, etc. The study of mechanisms is important for the development of technologies for processing hydrocarbons into products with high added value. In this work, to determine the nature of limiting stages and mechanisms of reactions of one group of saturated hydrocarbons, normal alkanes, we use the dependences of substrate selectivity (relative rate constants) on their characteristics: ionization potentials, energy and number of primary and secondary C–H bonds. To determine the nature of the limiting stages of reactions of normal alkanes, the correlations between the logarithms of substrate selectivity of alkanes reactions in H2SO4 solutions with one of the most active manganese(III) ions and molecule properties or C–H bond type were studied by the method of correlation analysis. Comparison of the obtained results with quantum-chemically calculated enthalpy changes of different possible variants of the course of this elementary reaction allowed to clarify the mechanism and propose tests to perform the mechanism of the slow limiting stage. It is shown that for alkanes (ethane, pentane, hexane, heptane, octane) the linear dependence with the ionization potential is most accurately performed, the least accurate is the correlation with the number of secondary C–H bonds, which indicates the electron abstraction in the slow limiting stage. For the shorter pentane – octane series, correlation dependences on both the number of secondary C–H bonds and the ionization potentials are performed with almost equal accuracy, which makes it impossible to establish the nature of the slow stage. The results of quantum-chemical calculations of hexane reactions in Mn(III)/Mn(II)–H2SO4 solutions showed that the most favorable are the electron abstraction by manganese(III) and subsequent proton transfer or homolysis of the C–H bond under the action of bisulfate radical, which is likely formed in the oxidation of sulfuric acid by manganese(III).

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3