Acid transesterification of oils with ethanol on carbon catalysts

Author:

Fedoryshyn O.S.,

Abstract

The main advantages and disadvantages of solid-phase catalysts for transesterification reactions of oils with alcohols are analyzed. Tests of the sulfonated and phosphated solid - phase catalysts synthesized by us in the transesterification reaction of rapeseed oil with 96% ethanol in order to obtain biodiesel were carried out. The chemical resistance of sulfonated synthetic (S-SCS) and synthesized from natural raw materials (S-KAU) catalysts was compared. The reasons for low chemical resistance of sulfonated carbon-containing materials are determined. Synthetic S-SCS catalysts proved to be the least stable. Regeneration of phosphated samples was performed by washing the catalyst from oil residues and reaction products in a boiling solution of 0.1 M alkali, followed by repeated washing with distilled water to slightly alkaline pH. Then, after drying, the obtained material was used as a source for re-synthesis of the catalyst. The ethanolysis reaction was carried out in autoclaves under pressure at a temperature of 150-160oC with a process duration of 5-7 hours. The ratio of catalyst to starting oil was chosen 1:15 (g : ml). The oil-alcohol ratio was 3: 4, vol. The volume of the autoclave was 45 ml. The maximum conversion under these test conditions in the first cycle for sulfonated catalysts was 100%, and for phosphated - 94%. A carbon-containing catalyst on a ceramic support has been developed, which can be regenerated by firing the carbon-containing material and applying a new one. This catalyst showed the highest chemical resistance, withstanding 7 cycles, while the conversion fell by 14% (from 89 to 75%). For more efficient use of the catalyst, the scheme of flow-circulation installation of transesterification of oils and fats of biological origin with alcohols was proposed.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference46 articles.

1. Zubenko S. O., Patrylak L. K. Methods of obtaining butyl esters of fatty acids: present and prospects. Catalysis and petrochemistry. 2020. 29. 11-23. [in Ukrainian].

2. Patrylak L. K., Zubenko S. O., Konovalov S. V. Transesterification of rapeseed oil by butanol over alkaline catalysts. Questions of chemistry and chemical technology. 2018. 5. 125-130. [in Ukrainian].

3. Patrylak L. K., Zubenko S. O., Konovalov S. V. Comparison of physicochemical and operational properties of biodiesel based on methanol and bioalcohols. Catalysis and petrochemistry. 2018. 27. 1-18. [in Ukrainian].

4. Zubenko S. O., Patrylak L. K. Transesterification of rapeseed oil by butanol. Catalysis and petrochemistry. 2014. 23. 46-48. [in Ukrainian].

5. Toda M., Takagaki A., Okamura M., Green chemistry - biodiesel made with sugar catalyst. Nature. 2005. 438. 178-178.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3