The effect of fuel gas mixtures and air flow rates on electrical properties of solid oxide fuel cell

Author:

Lysunenko N. O., ,Brodnikovskyi Y. M.,Chedryk V. I.,Brodnikovskyi D. M.,Polishko І. O.,Vasylyev O. D., , , , ,

Abstract

Fuel Cells are one of the most efficient and environmentally friendly devices for electricity generation, which are developing rapidly and are already in the early stages of commercialization. Solid Oxide Fuel Cells (SOFC) areone of the most promising their types due to the highest efficiency, fuel flexibility (H2, CnHm, CO etc.) and no needs in platinum group catalysts. The performance of SOFC is affected by various polarization losses, which aredependant on selected materials, their structure and SOFC operation parameters. Over the last decade, much attention is given to the study of SOFC’s electrochemical properties at different operating regimes: temperatures, fuels, fuel and oxidantflow rates etc. The work is devoted to studying the influence of the model fuel (5% H2—Ar) and air (oxidant) flow rates on electrical properties of Solid Oxide Fuel Cellat 800 °C to determine the best combination of gas flow rates, which provide the maximum values of specific electric power. The fuel (0,35 l/min) and oxidant (1 l/min)flow rates was found as the optimal operation regime of fuel and air supply for the SOFC tested. The highest electrical densityto be ensured by the model fuel was determined as 34 mW/cm2. The amount / flow rate of oxidant and fuel gases supplied to the fuel cell does not correspond to the ratio of the reagents of the chemical reaction of oxidation of the fuel. This difference is explained by the fact that the SOFC effectiveness of fuel and oxidant utilization depends not only from to the properties structure and materials of each components: anode, cathode, electrolyte, but also from concentration of fuel and oxidant in model fuel or air, which also creates a barrier for oxidant and fuel molecules to reach the reaction zone. Keywords: Solid Oxide Fuel Cell, electrical properties, fuelgasmixtures, hydrogen, oxidant.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3