Modelling of shear stress field in glide plane in substitutional solid solutions

Author:

Lugovy M. I., ,Verbylo D. G.,Brodnikovskyy M. P., ,

Abstract

The formation of stochastic shear stress field in the glide plane in the substitutional solid solution was investigated by computer simulation. If the atoms in the crystal lattice nodes of the substitutional solid solution are considered as a kind of point defects in the virtual solvent medium, the shear stress distribution in the glide plane can be calculated based on the interaction of edge dislocation and such defects. For concentrated solid solutions, the shear stress will be a normally distributed random value with zero mathematical expectation. The standard deviation of this distribution will be the greater the greater the effective distortion of crystalline lattice of the alloy. In the case of dilute solid solution, where one of the components has a predominant content, the simulation gives shear stress distribution in the glide plane, where large peaks are separated from each other by wide areas of near-zero stresses. Thus, there are separate discrete obstacles in the form of large stress peaks for the edge dislocation in the glide plane in dilute solid solution, and the space between the peaks is practically stress-free. The average distance between large peaks correlates with the average distance between the atoms of those components that are few in solution, if total atomic fraction of these components is considered. Thus, the proposed modeling gives a very realistic shear stress distribution in the glide plane for concentrated and dilute substitutional solid solutions with fcc and bcc structures. This can be useful in further modeling the yield strength in multicomponent alloys. Keywords: dislocation, distorsion, shear stresses.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3