Abstract
The explosion of the Tonga volcano on January 15, 2022, led to significant disturbances in the Earth (lithosphere, World Ocean) — atmosphere — ionosphere — magnetosphere system. The purpose of this paper is to present the results of a study of global variations in the geomagnetic field caused by the explosion of the Tonga volcano on January 15, 2022. To analyze the variations of the X-, Y-, and Z-components of the geomagnetic field, registrations at 12 stations of the worldwide INTERMAGNET network were used. When processing the time series, the trend calculated over 60 min with a step of 1 min was first subtracted, and then a system spectral analysis was applied. An analysis of the state of space weather made it possible to choose January 13 and 17, 2022, as reference days. An analysis of time variations in the level of all components of the geomagnetic field showed the following. On the day of the volcano explosion, approximately after 04:21, there were significant variations in the level of all components, but the largest variations were observed in the level of the Y-component. The shortest time delay was 6 min. At the same time, quasi-periodic variations of the geomagnetic field with a period of 4…4.5 min and an amplitude of ~2 nT were caused by acoustic resonance in the field of a standing acoustic wave generated by the explosion of the volcano. In addition, six groups of possible disturbances stimulated by the volcano explosion were found. It is important that in each group, the time delay of disturbances increased with increasing distance between the volcano and the station. It was found that the disturbances were transported at speeds close to 4, 1.5, 1 km/s and 500, 313, and 200 m/s. Such velocities are characteristic of slow MHD waves, a blast wave, an atmospheric gravity wave, a Lamb wave, and an ionospheric tsunami wave.
Publisher
National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)
Subject
Space and Planetary Science,Aerospace Engineering
Reference50 articles.
1. 1. Sorokin V. M., Fedorovich G. V. (1982). The physics of slow MHD waves in the ionospheric plasma. Moscow: Energoatomizdat.
2. 2. Chernogor L. F. (2008). Advanced methods of spectral analysis of quasiperiodic wave-like processes in the ionosphere: Specific features and experimental results. Geomagn. Aeron. 2008. 48, № 5. С. 652-673. DOI:10.1134/S0016793208050101
3. 3. Chernogor L. F. (2009). Radiophysical and Geomagnetic Effects of Rocket Engine Burn: Monograph. Kharkiv: V. N. Karazin Kharkiv National University Publ.
4. 4. Chernogor L. F. (2012). Physics and ecology of the catastrophes. (Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ.) [in Russian].
5. 5. Chernogor L. F. Physical effects of the January 15, 2022, powerful Tonga volcano explosion in the Earth-atmosphere-ionosphere-magnetosphere system. Space Science and Technology. [in Press].
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献