DYNAMIC PROPERTIES OF NANOCOMPOSITE AND THREE-LAYER THIN-WALLED AEROSPACE ELEMENTS MANUFACTURED BY ADDITIVE TECHNOLOGIES

Author:

Avramov K.V., ,Uspensky B.V.ORCID,Derevyanko I. I.ORCID,Degtyaryov M.O,Polishchuk O.F.ORCID,Chernobryvko M.V.ORCID, , , , ,

Abstract

Nanocomposite and sandwich plates with a honeycomb core are characterized by a high strength-to-mass ratio. Thus, such a solution is very promising for the aerospace and aircraft industry. This paper represents a mathematical model for a nanocomposite functionally gradient cylindrical shell interacting with a supersonic gas flow. To obtain such a model, the predetermined form method is used. An ordinary nonlinear differential equations system is obtained to describe the self-sustained vibrations of the shell. The structure model is developed using nonlinear strain-displacement relationships to analyze self-sustained vibrations. A model describing self-sustained vibrations of a sandwich conical shell interacting with a supersonic gas flow is obtained. The core layer of the shell is an FDM-manufactured honeycomb. The stress state of the structure is analyzed using the highorder shear deformations theory. Each layer’s stress state is described by five coordinates which are the three displacements of the midsurface and two angles of rotation of the normal to the midsurface. At the layers’ junctions, the border conditions of displacements’ continuity are used. To analyze self-sustained vibrations, the nonlinear strain-displacement relationships are utilized. Using the normal modes technique allows us to obtain a nonlinear autonomous dynamic system. Results of numerical simulations of self-sustained vibrations are provided. They are obtained by solving a nonlinear boundary value problem for the ordinary differential equations system using shooting and continuation techniques. Experimental investigation of sandwich plates’ fatigue with honeycomb core is considered. A method of fatigue testing of sandwich plates is described. The testing results are presented using S-N diagrams.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

Space and Planetary Science,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3