Model composition heat-resistant materials for multifunctioal coating

Author:

Husarova I. O., ,Potapov O. M.,Gorelov B. M.,Manko T. A.,Frolov G. O., , , ,

Abstract

A schematic diagram of composite material for a heat-resistant multifunctional coating providing radio invisibility and thermal protection of parts of missiles is proposed. Organosilicon binder KO-08K, inorganic binder НС-1A, and heat-resistant mastic NEOMID-TITANIUM were researched to select the materials of the heat-resistant matrix. Based on the analysis of the results of thermal desorption spectrometry of organosilicon binder and mastic NEOMID-TITANIUM with heat-resistant fillers, it was found that the thermal destruction is most effectively reduced by the matrix filler with perlite and aluminum. The efficiency of the selected composites at a high rate of temperature change was evaluated by the heat stroke method. It was revealed that samples based on the organosilicon binder with fillers failed to provide the required heat resistance of the material: NEOMID-TITANIUM mastic can be used in case of filling with 2 % of aluminum and aluminum-silicate binder HC-1A in the case of filling with 5 % aluminum and 10 % mullite. Selected materials were tested in a jet of a gas-dynamic burner. The results confirmed the need to reinforce the matrix with heat-resistant fabrics to increase its strength and erosion resistance. Heat-resistant silica fabric KT-11 and silica heat-resistant tape LKA-1200 were used as heat-resistant radio-transparent reinforcing fabric fillers. Thermo-erosion tests of reinforced samples in the jet of a gas-dynamic burner showed that the minimum linear removal was obtained on samples with a matrix based on NEOMID-TITANIUM mastic, which was reinforced with KT-11 fabric (outer layer) and LKA-1200 tape, which allows using these materials to create the multifunctional coating.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

Anesthesiology and Pain Medicine

Reference6 articles.

1. 1. Husarova I. A., Potapov A. M., Manko T. A., Falchenko Y. V., Petrushinets L. V., Frolov G. A., Solntsev B. P. (2017). Problems of Creating Thermal Protection Of Reentry Vehicles. Technology Systems, № 4 (81), 47-55 [in Russian].

2. Possibility Of Using Existing Radio-absorbing Coating Of Missile Warheads;Zvonko;Military Technical Collection 7 29-32 [in Ukrainian],2012

3. 3. Nikolaychuk G., Ivanov V., Yakovlev C. (2010). Radio-absorbing materials based on nanostructures. New Technologies. Ser. Electronics: Science, Technology, Business, № 1, 92-95 [in Russian].

4. 4. Potapov A. M. (2015). Assessment of the Possibility of Creating a Sprayed Non-wearable Coating for Rocket Technology. Space technology. Rocket armament, № 3 (110), 39-46 [in Russian].

5. 5. Simbirkina А. N., Husarova I. А., Prontsevich О. А., Prontsevich Е. V. (2019). Multifunctional Coating for Rocket Technology.Materials VII inter. conf. «Space technologies: present and future», 21-24 May 2019. Dnipro: Yuzhnoye SDO, 91 [in Russian].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3