Ionospheric effects from rocket launches against the background of geospace storms

Author:

Luo Y.ORCID, ,Chernogor L. F.ORCID,Zhdanko Y. H.ORCID, ,

Abstract

Ionospheric effects accompanying launches and maneuvering system thruster firings of large rockets have been studied for about 60 years. Fairly complete and adequate models of generation and propagation of disturbances, which are caused by launches and maneuvering system thruster firings of large rockets in the Earth–atmosphere–ionosphere–magnetosphere (EAIM) system, are absent at present. It turns out a number of physical effects during ionospheric storms and rocket launches are similar. Therefore, the presence of ionospheric storm significantly complicates the search for the ionospheric response to the spacecraft launches. The aim of this study is to describe the results of observation of the ionospheric processes that accompanied rocket launches and maneuvering system thruster firings against the background of ionospheric storms. To analyze the measurements, observational data of the state of the ionosphere before, at the time, and after Soyuz and Proton rocket launches from the Baikonur cosmodrome (the Republic of Kazakhstan) were used. Observations were made at the Radiophysical Observatory of V. N. Karazin Kharkiv National University (near Kharkiv city, Ukraine). The Doppler vertical sounding radar was used for the measurements. Observations were made during solar cycle 24 (2009—2021). The number of the Soyuz rocket launches is 81, and 53 launches of the Proton rocket. Identification of the ionospheric response to the launch and maneuvering system thruster firings of a large rocket 2000 km away from the observation site against the background of a geospace storm by the Doppler method is usually possible at Kpmax   5, and at its larger values is very complicated or even impossible. In a number of cases, even though Kpmax = 4 the determination of the ionospheric response is complicated. To increase the detection reliability of the response to the launch and maneuvering system thruster firings of the rocket, the Doppler radar has to operate on a number of frequencies in the frequency range from 1.5...2 to 4…6 MHz. The existence of several groups of horizontal apparent speeds of disturbance propagation is confirmed: 1.7...3 km and more, 700...1000, 300...700, 150...260 m/s.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

Space and Planetary Science,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3