Abstract
Under extreme accelerations, human physiological mechanisms cannot provide adequate circulation. Special methods and devices protecting pilot’s brain and eye functionality have been proposed but their efficiency is individual and depends on pilot’s skills. Currently, the lonely technology to safely acquire and test the necessary skills is based on use of special centrifuges. However, lack of adequate data about physiological and biomechanical events are two main causes worsening the training results. Special computer simulators, capable to model and visualize the main mechanical and physiological effects occurring under dynamic accelerations, could increase the effectiveness of future pilot’s training process. This publication aims to define fundamental problems concerned with creating the required software. There exist two main groups of problems. The first group is concerned with the necessity to create basic mathematical models quantitatively describing both the physiological events and effects induced by protective maneuvers. Here special logical procedures, individualizing the basic physiological models, have to be proposed. The second group of problems is predominantly technical and associated with the necessity of special user interface (SUI) development. SUI must be subdivided into two functional sections – one for preparing a single computer experiment (simulation), and another – for analyzing the results of simulation. An experiment preparation includes the following events: i) a preliminary tuning of models according to biometrical data; ii) a setting of acceleration profile; iii) a choosing of protective algorithms and tools (or without protections); iv) a choosing of forms for results storage. Graphs presenting the dynamics of input and output variables are the main forms while the table forms are also included. The user (trainer or trainee) will be able to retrieve from the memory graphs of previous simulations to compare the effectiveness of additional protective elements. The software must be autonomic for the Windows platform.
Publisher
National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)
Reference22 articles.
1. 1. Burton, R.R.; Whinnery, J.E. Biodynamics: Sustained acceleration. In Fundamentals of Aerospace Medicine, 3rd ed.; DeHart, R.L., Davis, J.R., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2002; pp. 122-153.
2. 2. Slungaard E., McLeod J., Green, N.D.C., Kiran A., Newham D.J., Harridge S.D.R. Incidence of g-induced loss of consciousness and almost loss of consciousness in the Royal Air Force. Aerosp. Med. Hum. Perform. 2017, 88, 550-555.
3. 3. Newman, D.G. The cardiovascular system at high Gz. In High G Flight: Physiological Effects and Countermeasures, 1st ed.; Newman, D.G., Ed.; Ashgate: Farnham, UK, 2015; pp. 57-72.
4. 4. Park, M.; Yoo, S.; Seol, H.; Kim, C.; Hong, Y. Unpredictability of fighter pilots' G duration by anthropometric and physiological characteristics. Aerosp. Med. Hum. Perform. 2015, 86, 307-401.
5. 5. Yun, C.; Oh, S.; Shin, Y.H. AGSM proficiency and depression are associated with success of high-G training in trainee pilots. Aerosp. Med. Hum. Perform. 2019, 90, 613-617.