Use of neuroevolution for neural network policies search for robotic arm

Author:

A VitiukORCID, ,A DoroshenkoORCID, ,

Abstract

An approach to using neuroevolution to find neural network policies for the task of positioning a robotic arm is considered. As a rule, robotic problems have relatively large solution spaces, so here neuroevolutionary algorithms are a good alternative to traditional methods of deep machine learning. A neuroevolutionary algorithm automatically develops neural networks for a specific task and environment. The advantage is that it is only necessary to define the desired behavior abstractly, and the algorithm optimizes the artificial neural network as much as possible to fulfill the requirements. The considered NEAT algorithm allows processing multidimensional state and action spaces, providing flexibility to control complex robot arm movements. It is also capable of detecting control policies that exhibit unpredictable behavior that is not clearly programmed by human engineers. Neuroevolution allows multiple neural networks to be evaluated in parallel, providing efficient exploration of the search space. The operation of the algorithm was investigated in an experiment conducted in a two-dimensional environment with a robotic arm for the positioning task.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Reference10 articles.

1. 1. R. Mahjourian, R. Miikkulainen, Neuroevolutionary Planning for Robotic Control, Department of Computer Science The University of Texas at Austin Austin, 2018.

2. 2. Stork, Jörg, Zaefferer et al., Behavior-based Neuroevolutionary Training in Reinforcement Learning, 2021. doi:10.48550/arXiv.2105.07960.

3. 3. Kenneth O. Stanley and Risto Miikkulainen, Evolving Neural Networks Through Augmenting Topologies, Evolutionary Computation 10 (2): 99-127, 2002.

4. 4. А.Yu. Doroshenko, I.Z. Achour, Application of neuro evolution tools in automation of technical control systems, Prombles in programming 2021; 1: 16-25. doi:10.15407/pp2021.01.016.

5. 5. M. Wurtinger, Neuroevolution for Robot Control, Test Framework and Experimental Evaluation, Institut fur Informatik Lehrstuhl fur Programmierung und Softwaretechnik, 2011. URL:https://www.pst.ifi.lmu.de/Lehre/Abschlussarbeiten/vorlagen/thesis-wuertinger_2011-12-19.pdf.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3