Structure and properties of polyelectrolyte complexes of various type (chitosan chloride – polyacrilic acid) and triple polyelectrolyte-metalic complexe with cations Cu2+

Author:

Shtompel V.I.ORCID, ,Demchenko V.L.ORCID,Ovsyankina V.O.,Nischimenko A.V.,Riabov S.V.ORCID, , , ,

Abstract

Using FT-IR-spectroscopy, X-ray diffraction and thermomechanical analysis structure and thermomechanical properties of two nonstoichiometry and one stoichiometry polyelectrolyte complexes (PEC) based on opposite charged polyelectrolytes – strong cationic polyelectrolyte (chitosan chloride) and weak anionic polyelectrolyte (polyacrylic aсid) and triple polyelectrolyte-metal complexes (TPMC) based on stoichometry polyelectrolyte complexes and cations Cu(II) were investigated. It was shown, that chitosan chloride has amorphous-cristallinity structure, which is significantly different from the structure of neat chitosan, and polyacrylic acid posses amorphous structure. Meantime, all PEC samples have amorphous structure, differing from the structure of weak anionic polyelectrolyte, at the same time amorphous structure of nonstoichiometric PECs insignificantly different from that of stoichiometric polyelectrolyte complexes. Additionally, amorphous structure of TPMC has another structure, compared to all PEC. According to thermomechanical analysis, all PECs have one temperature transition from glassy to highly elastic state (from 77 to 84 °C). The deformation value of the samples of nonstoichiometric PEC is similar and somewhat less than the deformation of the stoichiometric PEC. The TPMC sample has two glass transitions (81 and 226 °C), and his high-temperature transition characterizes the segmental mobility of fragments of macromolecules of one stoichiometric PEC, the polar groups of which form chelate circles with Cu (II) cations. Deformation parameter of the TPMC is higher in comparison with the stoichiometric polyelectrolyte complexes. Keywords: structure, properties, deformation, ionic force, cationic Cu(II), polyelectrolyte, polyelectrolyte-metal complexes, chitosan chloride, polyacrylic acid, X-ray diffraction, thermomechanical analysis.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3