Author:
Dudarenko M. V., ,Pozdnyakova N. G.,
Abstract
Levetiracetam (LV), 2S-(2-oxo-1-pyrrolidiny1) butanamide, is an antiepileptic drug. The exact mechanisms of anticonvulsant effects of LV remain unclear. In this study, rats (Wistar strain) underwent hypoxia and seizures at the age of 10–12 postnatal days (pd). [3H]GABA release was analysed in isolated from thalamus nerve terminals (synaptosomes) during development at the age of pd 17–19 and pd 24–26 (infantile stage), pd 38–40 (puberty) and pd 66–73 (young adults) in control and after perinatal hypoxia. The extracellular level of [3H]GABA in the preparation of thalamic synaptosomes increased during development at the age of pd 38–40 and pd 66–73 as compared to earlier ones. LV did not influence the extracellular level of [3H]GABA in control and after perinatal hypoxia at all studied ages. Exocytotic [3H]GABA release in control increased at the age of pd 24–26 as compared to pd 17–19. After hypoxia, exocytotic [3H]GABA release from synaptosomes also increased during development. LV elevated [3H]GABA release from thalamic synaptosomes at the age of pd 66–73 after hypoxia and during blockage of GABA uptake by NO-711 only. LV realizes its antiepileptic effects at the presynaptic site through an increase in exocytotic release of [3H]GABA in thalamic synaptosomes after perinatal hypoxia at pd 66–73. LV exhibited a more significant effect in thalamic synaptosomes after perinatal hypoxia than in control ones. The action of LV is age-dependent, and the drug was inert at the infantile stage that can be useful for an LV application strategy in child epilepsy therapy. Keywords: brain development, exocytosis, GABA, levetiracetam, perinatal hypoxia, thalamic synaptosomes
Publisher
National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)