Author:
Zolotarenko O. D., ,Rudakova O. P.,Kartel M. T.,Kaleniuk H. O.,Zolotarenko A. D.,Schur D. V.,Tarasenko Yu. O., , , , , ,
Abstract
The regularities of the formation of nanostructures during the evaporation of graphite by the electric ARC – method are studied. Described physicochemical processes in the synthesis reactor . At plasma temperatures taking into account the behavior of particles in electromagnetic fields with extreme temperature and pressure grants. A sequence of organization of matter in the process of forming a structure according to nano-dimensional characteristics is proposed. The self-organization of systems during electric arc evaporation of graphite or graphite-containing electrodes has been studied. The mechanisms of formation of soluble (fullerenes and fullerene-like structures) and insoluble (nanocomposites, CNTs, graphenes) carbon nanostructures are considered. The processes occurring in the electric arc synthesis reactor are analyzed: the process of distribution of charged particles in an electric arc at different times; processes taking place at the anode; the mechanism of carbon vapor formation during graphite evaporation; processes in the gas phase and on the walls of the reactor under the conditions of an electric arc discharge; model of the reactor space zones; formation of carbon nanostructures in the gas phase and on the inner surface of the reactor. use of doped electrodes and metal inserts (sleeves) as catalysts for the synthesis of carbon nanostructures. The sequence of processes in the formation of spherical carbon molecules is studied, and the processes and structural transformations are considered. In the research work, the products (fullerenes and fullerene-like structures, nanocomposites, VNT, graphenes) of electric arc synthesis are presented, and modern methods of analysis are used for their fixation and identification.
Publisher
National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka)
Reference73 articles.
1. 1. Strelko V. V., Nemoshkalenko V. V., Kartel N. T., Medvedev, S. L. (1983). On the state of the nitrogen atoms in the graphite lattice of activated carbons. Adsorption and Adsorbents, 11, 76-80.
2. Carbon nanotubes: biorisks and biodefence;Kartel;In Biodefence (pp,2011
3. 3. Zakutevskij O. I., Psareva T. S., Strelko V. V., Kartel N. T. (2007). Sorption of U (VI) from aqueous solutions with carbon sorbents. Radiokhimiya, 49(1), 61-64.
4. Estimation of the effect of carbon nanotubes on the microviscosity of erythrocyte membranes by the spin probe method;Kartel;Reports of the National Academy of Sciences of Ukraine (3),2015
5. Kinetics of Valeric Acid Ketonization and Ketenization in Catalytic Pyrolysis on Nanosized SiO2, γ‐Al2O3, CeO2/SiO2, Al2O3/SiO2 and TiO2/SiO2;Kulyk;ChemPhysChem,2017
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献