Static stability of sandwich panels with honeycomb cores made by additive technologies

Author:

Chernobryvko M.V., ,Avramov K.V.ORCID,Uspenskyi B.V.,Marshuba I.S., , ,

Abstract

This paper presents approaches to and the results of finite-element analysis of static buckling in cylindrical sandwich panels. The core layer of the panels is a polylactide honeycomb core 3D printed using the Fused Deposition Modeling (FDM) additive technology. The two thin face layers are made of carbon fiber reinforced polymer. Such structures are promising for use as structural elements of rockets and drones. For them, the determination of stability under longitudinal and radial loads is an important issue. The global buckling of a cylindrical panel under longitudinal loads and the local buckling of a honeycomb core as a plate structure under radial loads are studied. The geometrically nonlinear deformation of a cylindrical panel under a combination of transverse and radial loads is studied. Seven cylindrical sandwich panels with the radius-to-thickness ratio in the range 5 ? R/h ? 50 and a sandwich plate are considered. The effect of the radius of curvature on the characteristics of local and global buckling is investigated. The problem is solved by the finite element method using the ANSYS software system. The convergence of the finite element model was investigated. For this purpose, a strained state under the action of a longitudinal load was studied. The finite-element mesh parameters were selected to ensure the convergence of the results. Two finite element models, an “exact” one and an “approximate” one, were constructed to investigate global buckling under longitudinal loads. The «exact» model includes a honeycomb core represented by its geometry. In the «approximate» model of the sandwich panel, the honeycomb core is replaced with an equivalent homogenized layer. It was found that for longitudinal loads the modes of the global buckling of the cylindrical sandwich panels and the sandwich plate under study are almost the same. It was shown that the critical loads obtained by the «exact» and the «approximate» model are close. It was found that when a cylindrical panel is deformed under the action of a combination of longitudinal and radial subcritical loads, the calculated results for the «exact» and the «approximate» model are close. Therefore, longitudinal buckling can be considered using the homogenized model, which is much simpler in terms of computations.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3