Reducing the dimension of a nonlinear dynamic system to simulate a multi-walled nanotube

Author:

Avramov K.V.ORCID, ,Biblik I.V.,Hrebennik I.V.,Urniaieva I.A., , ,

Abstract

A system of nonlinear partial differential equations is derived to describe the vibrations of a multi-walled nanotube. The system reduces to a nonlinear dynamic system with а large number of degrees of freedom (DOFs). To reduce its dimension, the nonlinear modal analysis method is used to give 2-DOF dynamic system, which is studied by the asymptotic multiple scale method. This gives a system of modulation equations, whose fixed points describe the free vibrations of the nanotube. The fixed points are described by nonlinear algebraic equations, whose solutions are given on a backbone curve. Use is made of the Sanders–Koiter shell model to describe the nonlinear deformation of the nanotube and Hook’s nonlocal anisotropic law to simulate its vibrations. Notice that the elastic constants of the nanotube walls differ. The nanotube model is a system of nonlinear ordinary differential equations, which is obtained by applying the weighed residuals method to the nonlinear partial equations. Three types of nonlinearities are accounted for in the nanotube model. First, the Van der Waals forces are nonlinear functions of the radial displacements. Second, the displacements of the nanotube walls are assumed to be moderate, which is described by a geometrically nonlinear model. Third, since the resultant forces are nonlinear functions of the displacements, the use of natural boundary conditions in the weighted residuals method results in additional nonlinear terms. A finite-DOF nonlinear dynamical system is derived. The free nonlinear vibrations of the nanotube are analyzed. The calculated results are shown on a backbone curve.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3