Analysis of speech MEL scale and its classification as big data by parameterized KNN

Author:

R SkuratovskiiORCID, ,A Bazarna,E Osadhyy, , , ,

Abstract

Recognizing emotions and human speech has always been an exciting challenge for scientists. In our work the parameterization of the vector is obtained and realized from the sentence divided into the containing emotional-informational part and the informational part is effectively applied. The expressiveness of human speech is improved by the emotion it conveys. There are several characteristics and features of speech that differentiate it among utterances, i.e. various prosodic features like pitch, timbre, loudness and vocal tone which categorize speech into several emotions. They were supplemented by us with a new classification feature of speech, which consists in dividing a sentence into an emotionally loaded part of the sentence and a part that carries only informational load. Therefore, the sample speech is changed when it is subjected to various emotional environments. As the identification of the speaker’s emotional states can be done based on the Mel scale, MFCC is one such variant to study the emotional aspects of a speaker’s utterances. In this work, we implement a model to identify several emotional states from MFCC for two datasets, classify emotions for them on the basis of MFCC features and give the correspondent comparison of them. Overall, this work implements the classification model based on dataset minimization that is done by taking the mean of features for the improvement of the classification accuracy rate in different machine learning algorithms. In addition to the static analysis of the author's tonal portrait, which is used in particular in MFFC, we propose a new method for the dynamic analysis of the phrase in processing and studying as a new linguistic-emotional entity pronounced by the same author. Due to the ranking by the importance of the MEL scale features, we are able to parameterize the vectors coordinates be processed by the parametrized KNN method. Language recognition is a multi-level task of pattern recognition. Here acoustic signals are analyzed and structured in a hierarchy of structural elements, words, phrases and sentences. Each level of such a hierarchy may provide some temporal constants: possible word sequences or known types of pronunciation that reduce the number of recognition errors at a lower level. An analysis of voice and speech dynamics is appropriate for improving the quality of human perception and the formation of human speech by a machine and is within the capabilities of artificial intelligence. Emotion results can be widely applied in e-learning platforms, vehicle on-board systems, medicine, etc

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3