Intelligent Information Technology for Inductive Modeling of Complex Processes on the Basis of Recurrent-and-Parallel Computations

Author:

Yefimenko Serhiy M.ORCID,

Abstract

The paper develops a novel intelligent information technology for inductive modeling of complex processes by experimental data, the high level of productivity of which is achieved by applying a new concept of combining the efficiency of recurrent and parallel computations. The implementation of such technology in modern intelligent information-and-analytical systems provides a significant increase in the efficiency and validity of making managerial decisions in the tasks of operational management of complex processes. An example is done of using the developed technology for evaluation and forecast of the investment activity in Ukraine.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Reference13 articles.

1. 1. Madala, H.R., Ivakhnenko, A.G., 1994. Inductive Learning Algorithms for Complex Systems Modeling. London, Tokyo: CRC Press Inc., 384 p.

2. 2. Self-organizing methods in modeling: GMDH type algorithms. Farlow, S.J. (ed.). New York, Basel: Marcel Decker Inc. (1984).

3. 3. Yefimenko, S., 2013. "Comparative Effectiveness of Parallel and Recurrent Calculations in Combinatorial Algorithms of Inductive Modelling". Proceedings of the 4th International Conference on Inductive Modelling ICIM'2013, Kyiv, pp. 231-234.

4. 4. Stepashko, V.S., 1981. "A Combinatorial Algorithm of the Group Method of Data Handling with Optimal Model Scanning Scheme". Soviet Automatic Control, 14(3), pp. 24-28.

5. 5. Stepashko, V.S. Efimenko, S.N., 2005. "Sequential Estimation of the Parameters of Regression Model," Cybernetics and Systems Analysis, Springer New York, 41 (4), pp. 631-634.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3