Abstract
The paper presents a modification of the Frechet distance for nonisomorphic trees. While the classical Frechet distance between nonisomorphic trees is undefined, a new measure called similarity of a tree to a reference tree is given that is defined for a wider class of trees. A polynomial-time algorithm is given to determine whether one tree’s similarity to another is less than a given number.
Publisher
National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)
Reference8 articles.
1. 1. Alt H., Godau M., 1995."Computing the Fréchet distance between two polygonal curves". Int. J. Comput. Geometry Appl.Vol. 5,pp. 75-91.
2. 2. Berezsky O., Zarichnyi M., 2016. "Frechet distance between weighted rooted trees".MatematychniStudii. Dec. Vol. 48.
3. 3. Berezsky O., Zarichnyi M., 2018. "Gromov-Frechet distance between metric curves".MatematychniStudii. 2018. Aug. Vol. 50.
4. 4. Buchin M., Krivosija A., Neuhaus A., 2020."Computing the Fréchet distance of trees and graphs of bounded tree width".arXiv:2001.10502.
5. 5. Buchin K., 2017."Four Soviets Walk the Dog: Improved Bounds for Computing the Fréchet Distance". Discrete & Computational Geometry.