Recurrent neural network model for music generation

Author:

Komarskiy O.C.ORCID, ,Doroshenko А.Yu.ORCID, ,

Abstract

The paper considers the possibility of generating musical compositions using recurrent neural networks. Two approaches to the generation of musical works are proposed and considered, namely using the method of notes and the method of chords. The research of both methods was carried out, and their advantages and disadvantages were formulated. As a result it was decided to use the method of notes as the main one for music generation. The process of searching and processing data for learning a music neural network is described in detail, the algorithm for converting data from MIDI format to your own text for use in a neural network is considered in detail. The learning process of the neural network was also described, and the learning speed was compared using GPUs and CPUs, as a result of which it was determined that learning takes place faster using a graphics processor, in some cases 5.5 times. As a result of testing the operation of the neural network, it was determined that the optimal characteristics of the recurrent neural network for music generation is a network consisting of 4 LSTM layers, each with a dimension of 600 neurons. As music generation cannot be assessed by objective characteristics, a special focus group survey was conducted to assess quality. It shows that music generated by a neural network received almost the same marks as music. written by a man. It should be considered as a great result. It was also determined that it was difficult for the survey participants to correctly identify the author of a musical work, since they correctly identified the authors in only 58% of cases. The proposed solution allows to easily generate musical compositions without human intervention.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Reference6 articles.

1. Nierhaus G. (2009) Algorithmic Composition - Paradigms of Music Generation. Springer, Vienna. pp. 7-66.

2. Wasserman P. (1992) Neural Computing : Theory and Practice. pp. 180-185.

3. Callan R. (2001) The Essence of Neural Networks. pp. 50-65.

4. Nielsen A. (2015) Neural Networks and Deep Learning. p. 111.

5. Kandel E., Schwartz J., Jessell T. (2000) Principles of Neural Science 4th Edition. pp. 283-302.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3