On the peculiarities of using sparse matrices in problems of mathematical modeling

Author:

Khimich O.M.ORCID, ,Popov A.V.ORCID,Chystiakov О.V.ORCID, ,

Abstract

Mathematical modeling and the related computer experiment are now one of the main means of studying objects, processes and phenomena of various nature: in science, engineering, economics, society, etc. A significant improvement in the quality of mathematical modeling in many areas of science and engineering is possible only with the use of fundamentally new three-dimensional models, the transition from computer simulation of individual components and assemblies to the calculation and optimization of the product as a whole. It is obvious that the consideration of problems in such a formulation leads to discrete mathematical models of super-large sizes. Existing supercomputers of different parallel architectures make it possible to efficiently solve such problems. However, the time for solving problems on parallel computers consists of the time of the actual solution and the time of performing additional operations, that are necessary for the exchange of information between computing devices, that is overhead costs. This is especially true for problems of linear algebra with different structures of sparse matrices of large volumes, that arise in the mathematical modeling of processes. Sparse matrix compaction schemes, decomposition of data arrays between processors are one of the main factors for the effective solution of these problems on parallel computers. The paper considers efficient methods for processing sparse matrices of arbitrary structure for the purpose of effective mathematical modeling of structural strength problems on parallel computers. Various methods of regularization and decomposition of sparse matrices of arbitrary structure, efficient data storage schemes, technology for studying the conditionality of a matrix with approximate data on a computer are proposed. This way of using sparse matrices in mathematical modeling ensures more efficient use of computing resources and reliability of computer results. Problems of mathematical modeling are presented, where the considered methods of processing sparse matrices were effectively applied.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Reference21 articles.

1. 1. Timoshenko S.P., Goodier J. (1975) Theory of elasticity. M.: Nauka. 575 p. (in Russian)

2. 2. Gorodetsky A.S., Evzerov I.D. (2007) Computer models of structures. K: FACT. 394 p. (in Russian)

3. 3. Slobodyan Ya.E. (2009) Supercomputer technology for modeling the life cycle of especially complex technical objects. Cybernetics and Systems Analysis, Vol. 45, N. 6. P. 959-965.

4. 4. Baranov A.Yu., Popov A.B., Slobodyan Y.E., Khimich A.N. (2017) Mathematical Modeling of Building Constructions Using Hybrid Computing Systems. Journal of Automation and Information Sciences. Vol. 50 (7). P 18-32. https://doi.org/10.1615/jautomatinfscien.v49.i7.20.

5. 5. G. Strang and J. Fix An (1973) Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs, NJ, 306 p.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3