On the Possible Existence of Non-Fisher Universality Classes

Author:

Ivanitskyi A.I.,Bugaev K.A.

Abstract

The critical exponents α, α', β, γ', and δ of the model of quark-gluon bags with surface tension are found as functions of the most general model parameters. Two versions of the model that generate the phase diagram of the strongly interacting matter with critical or tricritical endpoint, respectively, are considered. The analysis of the relations between the critical exponents (scaling laws) shows that the scaling can be violated in a general case. The question whether it is possible to restore the scaling laws with the help of the Fisher definition of the α's exponent and its generalizations α'c and α'm is studied. It is shown that the Fisher scaling relation can be recovered with the help of the generalizations α'c and α'm, whereas no definition of the α' index is able to recover the Griffiths scaling relation in its traditional form. It is explicitly demonstrated that the additional condition α = α' is not sufficient to restore the Griffiths scaling relation in the traditional form. A generalization of this scaling relation which is valid for all known models is suggested. The obtained results allow us to conclude on the possible existence of the non-Fisher universality classes, for which the traditional scaling relations can be violated, whereas the generalized scaling laws can be established.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

General Physics and Astronomy

Reference54 articles.

1. 1. E.A. Guggenheim, J. Chem. Phys. 13, 253 (1945).

2. 2. M.E. Fisher, J. Math. Phys. 5, 944 (1964).

3. 3. M.E. Fisher and B.U. Felderhof, Ann. Phys. 58, 217 (1970).

4. 4. K. Huang, Statistical Mechanics (Wiley, New York, 1987).

5. 5. H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Clarendon Press, Oxford, 1971).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Alternative formulation of the induced surface and curvature tensions approach;Journal of Physics G: Nuclear and Particle Physics;2021-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3