Abstract
A number of novel two-dimensional materials and nanostructures demonstrate complex single-electron energy dispersion, which is called the mexican-hat dispersion. In this paper, we analyze interaction of a pair of electrons with such an energy dispersion. We show that relative motion of the electron pair is of a very peculiar character. For example, the real space trajectories corresponding to electron-electron scattering can have three reversal points, reversal points at non-zero radial momentum and other unusual features. Despite the repulsive Coulomb interaction, two electrons can be coupled forming a composite quasi-particle – the bi-electron. The bi-electron corresponds to excited states of the two-electron system. Because the bi-electron coupled states exist in continuum of extended (free) states of the electron pair, these states are quasi-resonant and have finite times of life. We found that rotating bi-electron is a long-living composite quasi-particle. The rotating bi-electrons can be in motion. For slowly moving bi-electrons, we have determined the kinetic energy and the effective mass. Due to strongly nonparabolic energy dispersion, the translational motion of the bi-electron is coupled to its internal motion. This results in effective masses dependent on quantum states of the bi-electron. In the paper, properties of the bi-electron have been illustrated for the example of bigraphene in a transverse electric field. We have suggested that investigation of rotating bi-electrons at the mexican-hat single-electron energy dispersion may bring new interesting effects in low-dimensional and low-temperature physics.
Publisher
National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献